Do you want to publish a course? Click here

Fast and Slow Precession of Gaseous Debris Disks Around Planet-Accreting White Dwarfs

110   0   0.0 ( 0 )
 Added by Ryan Miranda
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spectroscopic observations of some metal-rich white dwarfs (WDs), believed to be polluted by planetary material, reveal the presence of compact gaseous metallic disks orbiting them. The observed variability of asymmetric, double-peaked emission line profiles in about half of such systems could be interpreted as the signature of precession of an eccentric gaseous debris disk. The variability timescales --- from decades down to $1.4$ yr (recently inferred for the debris disk around HE 1349--2305) --- are in rough agreement with the rate of general relativistic (GR) precession in the test particle limit. However, it has not been demonstrated that this mechanism can drive such a fast, coherent precession of a radially extended (out to $1 R_odot$) gaseous disk mediated by internal stresses (pressure). Here we use the linear theory of eccentricity evolution in hydrodynamic disks to determine several key properties of eccentric modes in gaseous debris disks around WDs. We find a critical dependence of both the precession period and radial eccentricity distribution of the modes on the inner disk radius, $r_mathrm{in}$. For small inner radii, $r_mathrm{in} lesssim (0.2 - 0.4) R_odot$, the modes are GR-driven, with periods of $approx 1 - 10$ yr. For $r_mathrm{in} gtrsim (0.2 - 0.4) R_odot$, the modes are pressure-dominated, with periods of $approx 3 - 20$ yr. Correspondence between the variability periods and inferred inner radii of the observed disks is in general agreement with this trend. In particular, the short period of HE 1349--2305 is consistent with its small $r_mathrm{in}$. Circum-WD debris disks may thus serve as natural laboratories for studying the evolution of eccentric gaseous disks.



rate research

Read More

Optical spectroscopic observations of white dwarf stars selected from catalogs based on the Gaia DR2 database reveal nine new gaseous debris disks that orbit single white dwarf stars, about a factor of two increase over the previously known sample. For each source we present gas emission lines identified and basic stellar parameters, including abundances for lines seen with low-resolution spectroscopy. Principle discoveries include: (1) the coolest white dwarf (Teff~12,720 K) with a gas disk; this star, WD0145+234, has been reported to have undergone a recent infrared outburst; (2) co-location in velocity space of gaseous emission from multiple elements, suggesting that different elements are well-mixed; (3) highly asymmetric emission structures toward SDSSJ0006+2858, and possibly asymmetric structures for two other systems; (4) an overall sample composed of approximately 25% DB and 75% DA white dwarfs, consistent with the overall distribution of primary atmospheric types found in the field population; and (5) never-before-seen emission lines from Na in the spectra of GaiaJ0611-6931, semi-forbidden Mg, Ca, and Fe lines toward WD0842+572, and Si in both stars. The currently known sample of gaseous debris disk systems is significantly skewed towards northern hemisphere stars, suggesting a dozen or so emission line stars are waiting to be found in the southern hemisphere.
The discovery of numerous debris disks around white dwarfs (WDs), gave rise to extensive study of such disks and their role in polluting WDs, but the formation and evolution of these disks is not yet well understood. Here we study the role of aeolian (wind) erosion in the evolution of solids in WD debris disks. Aeolian erosion is a destructive process that plays a key role in shaping the properties and size-distribution of planetesimals, boulders and pebbles in gaseous protoplanetary disks. Our analysis of aeolian erosion in WD debris disks shows it can also play an important role in these environments. We study the effects of aeolian erosion under different conditions of the disk, and its erosive effect on planetesimals and boulders of different sizes. We find that solid bodies smaller than $sim 5 rm{km}$ will be eroded within the short disk lifetime. We compare the role of aeolian erosion in respect to other destructive processes such as collisional fragmentation and thermal ablation. We find that aeolian erosion is the dominant destructive process for objects with radius $lesssim 10^3 rm{cm}$ and at distances $lesssim 0.6 R_odot$ from the WD. Thereby, aeolian erosion constitutes the main destructive pathway linking fragmentational collisions operating on large objects with sublimation of the smallest objects and Poynting-Robertson drag, which leads to the accretion of the smallest particles onto the photosphere of WDs, and the production of polluted WDs.
104 - K. Werner , T. Nagel , T. Rauch 2008
We report on our attempt for the first non-LTE modeling of gaseous metal disks around single DAZ white dwarfs recently discovered by Gaensicke et al. and thought to originate from a disrupted asteroid. We assume a Keplerian rotating viscous disk ring composed of calcium and hydrogen and compute the detailed vertical structure and emergent spectrum. We find that the observed infrared CaII emission triplet can be modeled with a hydrogen-deficient gas ring located at R=1.2 R_sun, inside of the tidal disruption radius, with Teff about 6000 K and a low surface mass density of about 0.3 g/cm**2. A disk having this density and reaching from the central white dwarf out to R=1.2 R_sun would have a total mass of 7 10**21 g, corresponding to an asteroid with about 160 km diameter.
Circumstantial evidence suggests that most known extra-solar planetary systems are survivors of violent dynamical instabilities. Here we explore how giant planet instabilities affect the formation and survival of terrestrial planets. We simulate planetary system evolution around Sun-like stars from initial conditions that comprise: an inner disk of planetesimals and planetary embryos, three giant planets at Jupiter-Saturn distances, and a massive outer planetesimal disk. We then calculate dust production rates and debris disk SEDs assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. We predict a strong correlation between the presence of terrestrial planets and debris disks, mediated by the giant planets. Strong giant planet instabilities destroy all rocky material - including fully-formed terrestrial planets if the instabilities occur late - along with the icy planetesimals. Stable or weakly unstable systems allow terrestrial planets to accrete and significant dust to be produced in their outer regions. Stars older than ~100 Myr with bright cold dust emission (at ~70 microns) signpost the dynamically calm environments conducive to efficient terrestrial accretion. We predict that while the typical eccentricities of terrestrial planets are small, there should exist a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in eccentricity and inclination. By scaling to the observed semimajor axis distribution of giant exoplanets, we estimate that terrestrial exoplanets in the same systems should be a few times more abundant at 0.5 AU than giant or terrestrial exoplanets at 1 AU. Finally, we discuss the Solar System, which appears to be unusual in combining a rich terrestrial planet system with a low dust content.
25%-50% of all white dwarfs (WDs) host observable and dynamically active remnant planetary systems based on the presence of close-in circumstellar dust and gas and photospheric metal pollution. Currently-accepted theoretical explanations for the origin of this matter include asteroids that survive the stars giant branch evolution at au-scale distances and are subsequently perturbed onto WD-grazing orbits following stellar mass loss. In this work we investigate the tidal disruption of these highly-eccentric (e > 0.98) asteroids as they approach and tidally disrupt around the WD. We analytically compute the disruption timescale and compare the result with fully self-consistent numerical simulations of rubble piles by using the N-body code PKDGRAV. We find that this timescale is highly dependent on the orbits pericentre and largely independent of its semimajor axis. We establish that spherical asteroids readily break up and form highly eccentric collisionless rings, which do not accrete onto the WD without additional forces such as radiation or sublimation. This finding highlights the critical importance of such forces in the physics of WD planetary systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا