Do you want to publish a course? Click here

Boosting GWs in Supersolid Inflation

221   0   0.0 ( 0 )
 Added by Luigi Pilo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inflation driven by a generic self-gravitating medium is an interesting alternative to study the impact of spontaneous spacetime symmetry breaking during a quasi de-Sitter phase, in particular the 4-dimensional diffeomorphism invariance of GR is spontaneously broken down to $ISO(3)$. The effective description is based on four scalar fields that describe the excitations of a supersolid. There are two phonon-like propagating scalar degrees of freedom that mix non-trivially both at early and late times and, after exiting the horizon, give rise to non-trivial correlations among the different scalar power spectra. The non-linear structure of the theory allows a secondary gravitational waves production during inflation, efficient enough to saturate the present experimental bound and with a blue-tilted spectral index.



rate research

Read More

We study primordial non-gaussianity in supersolid inflation. The dynamics of supersolid is formulated in terms of an effective field theory based on four scalar fields with a shift symmetric action minimally coupled with gravity. In the scalar sector, there are two phonon-like excitations with a kinetic mixing stemming from the completely spontaneous breaking of diffeomorphism. In a squeezed configuration, $f_{text{NL}}$ of scalar perturbations is angle dependent and not proportional to slow-roll parameters showing a blunt violation of the Maldacena consistency relation. Contrary to solid inflation, the violation persists even after an angular average and generically the amount of non-gaussianity is significant. During inflation, non-gaussianity in the TSS and TTS sector is enhanced in the same region of the parameters space where the secondary production of gravitational waves is sizeable enough to enter in the sensitivity region of LISA, while the scalar $f_{text{NL}}$ is still within the current experimental limits.
The much-discussed swampland conjectures suggest significant constraints on the properties of string theory landscape and on the nature of the multiverse that this landscape can support. The conjectures are especially constraining for models of inflation; in particular, they exclude the existence of de Sitter (dS) vacua. If the conjectures are false and dS vacua do exist, it still appears that their construction in string theory requires a fair amount of fine-tuning, so they may be vastly outnumbered by AdS vacua. Here we explore the multiverse structure suggested by these considerations. We consider two scenarios: (i) a landscape where dS vacua are rare and (ii) a landscape where dS vacua do not exist and the dS potential maxima and saddle points are not flat enough to allow for the usual hilltop inflation, even though slow-roll inflation is possible on the slopes of the potential. We argue that in both scenarios inflation is eternal and all parts of the landscape that can support inflation get represented in the multiverse. The spacetime structure of the multiverse in such models is nontrivial and is rather different from the standard picture.
A novel scalar field free approach to cosmic inflation is presented. The inflationary Universe and the radiation dominated Universe are shown, within the framework of unified brane cosmology, to be two different phases governed by one and the same energy density. The phase transition of second order (the Hubble constant exhibits a finite jump) appears naturally and serves as the exit mechanism. No re-heating is needed. The required number of e-folds is achieved without fine tuning.
In this paper, we employ mimetic $f(R,T)$ gravity coupled with Lagrange multiplier and mimetic potential to yield viable inflationary cosmological solutions consistent with latest Planck and BICEP2/Keck Array data. We present here three viable inflationary solutions of the Hubble parameter ($H$) represented by $H(N)=left(A exp beta N+B alpha ^Nright)^{gamma }$, $H(N)=left(A alpha ^N+B log Nright)^{gamma }$, and $H(N)=left(A e^{beta N}+B log Nright)^{gamma }$, where $A$, $beta$, $B$, $alpha$, $gamma$ are free parameters, and $N$ represents the number of e-foldings. We carry out the analysis with the simplest minimal $f(R,T)$ function of the form $f(R,T)= R + chi T$, where $chi$ is the model parameter. We report that for the chosen $f(R,T)$ gravity model, viable cosmologies are obtained compatible with observations by conveniently setting the Lagrange multiplier and the mimetic potential.
We consider an inflationary model motivated by quantum effects of gravitational and matter fields near the Planck scale. Our Lagrangian is a re-summed version of the effective Lagrangian recently obtained by Demmel, Saueressig and Zanusso~cite{Demmel:2015oqa} in the context of gravity as an asymptotically safe theory. It represents a refined Starobinsky model, ${cal L}_{rm eff}=M_{rm P}^2 R/2 + (a/2)R^2/[1+bln(R/mu^2)]$, where $R$ is the Ricci scalar, $a$ and $b$ are constants and $mu$ is an energy scale. By implementing the COBE normalisation and the Planck constraint on the scalar spectrum, we show that increasing $b$ leads to an increased value of both the scalar spectral index $n_s$ and the tensor-to-scalar ratio $r$. Requiring $n_s$ to be consistent with the Planck collaboration upper limit, we find that $r$ can be as large as $rsimeq 0.01$, the value possibly measurable by Stage IV CMB ground experiments and certainly from future dedicated space missions. The predicted running of the scalar spectral index $alpha=d n_s/dln(k)$ is still of the order $-5times 10^{-4}$ (as in the Starobinsky model), about one order of magnitude smaller than the current observational bound.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا