Do you want to publish a course? Click here

Radiation Driven Inflation

157   0   0.0 ( 0 )
 Added by Ilya Gurwich
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A novel scalar field free approach to cosmic inflation is presented. The inflationary Universe and the radiation dominated Universe are shown, within the framework of unified brane cosmology, to be two different phases governed by one and the same energy density. The phase transition of second order (the Hubble constant exhibits a finite jump) appears naturally and serves as the exit mechanism. No re-heating is needed. The required number of e-folds is achieved without fine tuning.

rate research

Read More

109 - She-Sheng Xue 2019
Suppose that the early Universe starts with a quantum spacetime originated cosmological $Lambda$-term at the Planck scale $M_{rm pl}$. The cosmological energy density $rho_{_{_Lambda}}$ drives inflation and simultaneously reduces its value to create the matter-energy density $rho_{_{_M}}$ via the continuous pair productions of massive fermions and antifermions. The decreasing $rho_{_{_Lambda}}$ and increasing $rho_{_{_M}}$, in turn, slows down the inflation to its end when the pair production rate $Gamma_M$ is larger than the Hubble rate $H$. The density $rho_{_{_Lambda}}$ and Hubble rate $H$ are uniquely determined by two independent equations from the Einstein equation and energy conservation law, besides the $rho_{_{_M}}$ is determined by pair productions. As a result, inflation naturally appears and theoretical results agree with Planck 2018 observations. Suppose that the reheating efficiently converts $rho_{_{_Lambda}}$ to $rho_{_{_M}}gg rho_{_{_Lambda}}$ accounting for the most relevant Universe mass, and some massive pairs decay to relativistic particles of energy density $rho_{_{_R}}$ starting the hot Big Bang. The back reaction $rho_{_{_M}}leftrightarrow Hleftrightarrow rho_{_{_Lambda}}$ is weak but continues. As a consequence, $rho_{_Lambda}$ closely tracks down $rho_{_R}$ from the reheating end up to the radiation-matter equilibrium, then it varies very slowly, $rho_{_Lambda}propto$ constant, due to the transition from radiation dominant epoch to matter dominant epoch. Therefore the cosmic coincidence problem can be possibly avoided.
We investigate warm inflationary scenario in which the accelerated expansion of the early Universe is driven by chameleon-like scalar fields. Due to the non-minimal coupling between the scalar field and the matter sector, the energy-momentum tensor of each fluid component is not conserved anymore, and the generalized balance equation is obtained. The new source term in the energy equation can be used to model warm inflation. On the other hand, if the coupling function varies slowly, the model reduces to the standard model used for the description of cold inflation. To test the validity of the warm chameleon inflation model, the results for warm inflationary scenarios are compared with the observational Planck2018 Cosmic Microwave Background data. In this regard, the perturbation parameters such as the amplitude of scalar perturbations, the scalar spectral index and the tensor-to-scalar ratio are derived at the horizon crossing in two approximations, corresponding to the weak and strong dissipative regimes. As a general result it turns out that the theoretical predictions of the chameleon warm inflationary scenario are consistent with the Planck 2018 observations.
In this review paper we investigate the connection between gravity and electromagnetism from Faraday to the present day. The particular focus is on the connection between gravitational and electromagnetic radiation. We discuss electromagnetic radiation produced when a gravitational wave passes through a magnetic field. We then discuss the interaction of electromagnetic radiation with gravitational waves via Feynman diagrams of the process $graviton + graviton to photon + photon$. Finally we review recent work on the vacuum production of counterpart electromagnetic radiation by gravitational waves.
The much-discussed swampland conjectures suggest significant constraints on the properties of string theory landscape and on the nature of the multiverse that this landscape can support. The conjectures are especially constraining for models of inflation; in particular, they exclude the existence of de Sitter (dS) vacua. If the conjectures are false and dS vacua do exist, it still appears that their construction in string theory requires a fair amount of fine-tuning, so they may be vastly outnumbered by AdS vacua. Here we explore the multiverse structure suggested by these considerations. We consider two scenarios: (i) a landscape where dS vacua are rare and (ii) a landscape where dS vacua do not exist and the dS potential maxima and saddle points are not flat enough to allow for the usual hilltop inflation, even though slow-roll inflation is possible on the slopes of the potential. We argue that in both scenarios inflation is eternal and all parts of the landscape that can support inflation get represented in the multiverse. The spacetime structure of the multiverse in such models is nontrivial and is rather different from the standard picture.
We show that in the vacuum inflation model, the gravitational baryogenesis mechanism will produce the baryon asymmetry. We analyze the evolution of entropy and baryon number in the vacuum inflation model. The comparison between dilution speed and the chemical potential may give a natural interpretation for decouple temperature of the gravitational baryogenesis interaction. From the result, the mechanism can give acceptable baryon-to-entropy ratio in the vacuum inflation model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا