No Arabic abstract
There are two widely used models for the Grassmannian $operatorname{Gr}(k,n)$, as the set of equivalence classes of orthogonal matrices $operatorname{O}(n)/(operatorname{O}(k) times operatorname{O}(n-k))$, and as the set of trace-$k$ projection matrices ${P in mathbb{R}^{n times n} : P^{mathsf{T}} = P = P^2,; operatorname{tr}(P) = k}$. The former, standard in manifold optimization, has the advantage of giving numerically stable algorithms but the disadvantage of having to work with equivalence classes of matrices. The latter, widely used in coding theory and probability, has the advantage of using actual matrices (as opposed to equivalence classes) but working with projection matrices is numerically unstable. We present an alternative that has both advantages and suffers from neither of the disadvantages; by representing $k$-dimensional subspaces as symmetric orthogonal matrices of trace $2k-n$, we obtain [ operatorname{Gr}(k,n) cong {Q in operatorname{O}(n) : Q^{mathsf{T}} = Q, ; operatorname{tr}(Q) = 2k -n}. ] As with the other two models, we show that differential geometric objects and operations -- tangent vector, metric, normal vector, exponential map, geodesic, parallel transport, gradient, Hessian, etc -- have closed-form analytic expressions that are computable with standard numerical linear algebra. In the proposed model, these expressions are considerably simpler, a result of representing $operatorname{Gr}(k,n)$ as a linear section of a compact matrix Lie group $operatorname{O}(n)$, and can be computed with at most one QR decomposition and one exponential of a special skew-symmetric matrix that takes only $O(nk(n-k))$ time. In particular, we completely avoid eigen- and singular value decompositions in our steepest descent, conjugate gradient, quasi-Newton, and Newton methods for the Grassmannian.
How to make software analytics simpler and faster? One method is to match the complexity of analysis to the intrinsic complexity of the data being explored. For example, hyperparameter optimizers find the control settings for data miners that improve for improving the predictions generated via software analytics. Sometimes, very fast hyperparameter optimization can be achieved by just DODGE-ing away from things tried before. But when is it wise to use DODGE and when must we use more complex (and much slower) optimizers? To answer this, we applied hyperparameter optimization to 120 SE data sets that explored bad smell detection, predicting Github ssue close time, bug report analysis, defect prediction, and dozens of other non-SE problems. We find that DODGE works best for data sets with low intrinsic dimensionality (D = 3) and very poorly for higher-dimensional data (D over 8). Nearly all the SE data seen here was intrinsically low-dimensional, indicating that DODGE is applicable for many SE analytics tasks.
This paper proposes a generalized framework with joint normalization which learns lower-dimensional subspaces with maximum discriminative power by making use of the Riemannian geometry. In particular, we model the similarity/dissimilarity between subspaces using various metrics defined on Grassmannian and formulate dimen-sionality reduction as a non-linear constraint optimization problem considering the orthogonalization. To obtain the linear mapping, we derive the components required to per-form Riemannian optimization (e.g., Riemannian conju-gate gradient) from the original Grassmannian through an orthonormal projection. We respect the Riemannian ge-ometry of the Grassmann manifold and search for this projection directly from one Grassmann manifold to an-other face-to-face without any additional transformations. In this natural geometry-aware way, any metric on the Grassmann manifold can be resided in our model theoreti-cally. We have combined five metrics with our model and the learning process can be treated as an unconstrained optimization problem on a Grassmann manifold. Exper-iments on several datasets demonstrate that our approach leads to a significant accuracy gain over state-of-the-art methods.
We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a low-tubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors, and we present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data. We use principles from incremental gradient descent on the Grassmann manifold of subspaces to solve the tensor completion problem with linear complexity and constant memory in the number of time samples. Our results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications to recover temporal chemo-sensing and MRI data under limited sampling.
This paper studies stochastic optimization problems with polynomials. We propose an optimization model with sample averages and perturbations. The Lasserre type Moment-SOS relaxations are used to solve the sample average optimization. Properties of the optimization and its relaxations are studied. Numerical experiments are presented.
This paper explores the behavior of present-biased agents, that is, agents who erroneously anticipate the costs of future actions compared to their real costs. Specifically, the paper extends the original framework proposed by Akerlof (1991) for studying various aspects of human behavior related to time-inconsistent planning, including procrastination, and abandonment, as well as the elegant graph-theoretic model encapsulating this framework recently proposed by Kleinberg and Oren (2014). The benefit of this extension is twofold. First, it enables to perform fine grained analysis of the behavior of present-biased agents depending on the optimisation task they have to perform. In particular, we study covering tasks vs. hitting tasks, and show that the ratio between the cost of the solutions computed by present-biased agents and the cost of the optimal solutions may differ significantly depending on the problem constraints. Second, our extension enables to study not only underestimation of future costs, coupled with minimization problems, but also all combinations of minimization/maximization, and underestimation/overestimation. We study the four scenarios, and we establish upper bounds on the cost ratio for three of them (the cost ratio for the original scenario was known to be unbounded), providing a complete global picture of the behavior of present-biased agents, as far as optimisation tasks are concerned.