Do you want to publish a course? Click here

Stochastic Polynomial Optimization

145   0   0.0 ( 0 )
 Added by Jiawang Nie
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper studies stochastic optimization problems with polynomials. We propose an optimization model with sample averages and perturbations. The Lasserre type Moment-SOS relaxations are used to solve the sample average optimization. Properties of the optimization and its relaxations are studied. Numerical experiments are presented.



rate research

Read More

106 - Jiawang Nie , Zi Yang 2021
The multi-objective optimization is to optimize several objective functions over a common feasible set. Since the objectives usually do not share a common optimizer, people often consider (weakly) Pareto points. This paper studies multi-objective optimization problems that are given by polynomial functions. First, we study the convex geometry for (weakly) Pareto values and give a convex representation for them. Linear scalarization problems (LSPs) and Chebyshev scalarization problems (CSPs) are typical approaches for getting (weakly) Pareto points. For LSPs, we show how to use tight relaxations to solve them, how to detect existence or nonexistence of proper weights. For CSPs, we show how to solve them by moment relaxations. Moreover, we show how to check if a given point is a (weakly) Pareto point or not and how to detect existence or nonexistence of (weakly) Pareto points. We also study how to detect unboundedness of polynomial optimization, which is used to detect nonexistence of proper weights or (weakly) Pareto points.
131 - James Saunderson 2019
We describe a new approach to certifying the global nonnegativity of multivariate polynomials by solving hyperbolic optimization problems---a class of convex optimization problems that generalize semidefinite programs. We show how to produce families of nonnegative polynomials (which we call hyperbolic certificates of nonnegativity) from any hyperbolic polynomial. We investigate the pairs $(n,d)$ for which there is a hyperbolic polynomial of degree $d$ in $n$ variables such that an associated hyperbolic certificate of nonnegativity is not a sum of squares. If $dgeq 4$ we show that this occurs whenever $ngeq 4$. In the degree three case, we find an explicit hyperbolic cubic in $43$ variables that gives hyperbolic certificates that are not sums of squares. As a corollary, we obtain the first known hyperbolic cubic no power of which has a definite determinantal representation. Our approach also allows us to show that, given a cubic $p$, and a direction $e$, the decision problem Is $p$ hyperbolic with respect to $e$? is co-NP hard.
There has been work on exploiting polynomial approximation to solve distributed nonconvex optimization problems involving univariate objectives. This idea facilitates arbitrarily precise global optimization without requiring local evaluations of gradients at every iteration. Nonetheless, there remains a gap between existing theoretical guarantees and diverse practical requirements for dependability, notably privacy preservation and robustness to network imperfections (e.g., time-varying directed communication and asynchrony). To fill this gap and keep the above strengths, we propose a Dependable Chebyshev-Proxy-based distributed Optimization Algorithm (D-CPOA). Specifically, to ensure both accuracy of solutions and privacy of local objectives, a new privacy-preserving mechanism is designed. This mechanism leverages the randomness in blockwise insertions of perturbed vector states and hence provides an improved privacy guarantee compared to the literature in terms of ($alpha,beta$)-data-privacy. Furthermore, to gain robustness to various network imperfections, we use the push-sum consensus protocol as a backbone, discuss its specific enhancements, and evaluate the performance of the proposed algorithm accordingly. Thanks to the linear consensus-based structure of iterations, we avoid the privacy-accuracy trade-off and the bother of selecting appropriate step-sizes in different settings. We provide rigorous analysis of the accuracy, dependability and complexity. It is shown that the advantages brought by the idea of polynomial approximation are maintained when all the above requirements exist. Simulations demonstrate the effectiveness of the developed algorithm.
Consider the stochastic composition optimization problem where the objective is a composition of two expected-value functions. We propose a new stochastic first-order method, namely the accelerated stochastic compositional proximal gradient (ASC-PG) method, which updates based on queries to the sampling oracle using two different timescales. The ASC-PG is the first proximal gradient method for the stochastic composition problem that can deal with nonsmooth regularization penalty. We show that the ASC-PG exhibits faster convergence than the best known algorithms, and that it achieves the optimal sample-error complexity in several important special cases. We further demonstrate the application of ASC-PG to reinforcement learning and conduct numerical experiments.
Stochastic compositional optimization generalizes classic (non-compositional) stochastic optimization to the minimization of compositions of functions. Each composition may introduce an additional expectation. The series of expectations may be nested. Stochastic compositional optimization is gaining popularity in applications such as reinforcement learning and meta learning. This paper presents a new Stochastically Corrected Stochastic Compositional gradient method (SCSC). SCSC runs in a single-time scale with a single loop, uses a fixed batch size, and guarantees to converge at the same rate as the stochastic gradient descent (SGD) method for non-compositional stochastic optimization. This is achieved by making a careful improvement to a popular stochastic compositional gradient method. It is easy to apply SGD-improvement techniques to accelerate SCSC. This helps SCSC achieve state-of-the-art performance for stochastic compositional optimization. In particular, we apply Adam to SCSC, and the exhibited rate of convergence matches that of the original Adam on non-compositional stochastic optimization. We test SCSC using the portfolio management and model-agnostic meta-learning tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا