Do you want to publish a course? Click here

Modeling interstellar amorphous solid water grains by tight-binding based methods: comparison between GFN-XTB and CCSD(T) results for water clusters

93   0   0.0 ( 0 )
 Added by Aur\\`ele Germain
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

One believed path to Interstellar Complexes Organic Molecules (iCOMs) formation inside the Interstellar Medium (ISM) is through chemical recombination at the surface of amorphous solid water (ASW) mantle covering the silicate-based core of the interstellar grains. The study of these iCOMs formation and their binding energy to the ASW, using computational chemistry, depends strongly on the ASW models used, as different models may exhibit sites with different adsorbing features. ASW extended models are rare in the literature because large sizes require very large computational resources when quantum mechanical methods based on DFT are used. To circumvent this problem, we propose to use the newly developed GFN-xTB Semi-empirical Quantum Mechanical (SQM) methods from the Grimmes group. These methods are, at least, two orders of magnitude faster than conventional DFT, only require modest central memory, and in this paper we aim to benchmark their accuracy against rigorous and resource hungry quantum mechanical methods. We focused on 38 water structures studied by MP2 and CCSD(T) approaches comparing energetic and structures with three levels of GFN-xTB parametrization (GFN0, GFN1, GFN2) methods. The extremely good results obtained at the very cheap GFN-xTB level for both water cluster structures and energetic paved the way towards the modeling of very large AWS models of astrochemical interest.



rate research

Read More

141 - R. Dupuy , G. Feraud , M Bertin 2020
Core-excitation of water ice releases many different molecules and ions in the gas phase. Studying these desorbed species and the underlying mechanisms can provide useful information on the effects of X-ray irradiation in ice. We report a detailed study of the X-ray induced desorption of a number of neutral, cationic and anionic species from amorphous solid water. We discuss the desorption mechanisms, and the relative contributions of Auger and secondary electrons (X-ray induced Electron Stimulated Desorption) and initial excitation (rev{direct desorption}) as well as the role of photochemistry. Anions are shown to desorb not just through processes linked with secondary electrons but also through direct dissociation of the core-excited molecule. The desorption spectra of oxygen ions (O$^+$, OH$^+$, H$_2$O$^+$, O$^-$, OH$^-$) give a new perspective on their previously reported very low desorption yields for most types of irradiation of water, showing that they mostly originate from the dissociation of photoproducts such as H$_2$O$_2$.
Vacuum-UV (VUV) photodesorption from water-rich ice mantles coating interstellar grains is known to play an important role in the gas-to-ice ratio in star- and planet-forming regions. Quantitative photodesorption yields from water ice are crucial for astrochemical models. We aim to provide the first quantitative photon-energy dependent photodesorption yields from water ice in the VUV. This information is important to understand the photodesorption mechanisms and to account for the variation of the yields under interstellar irradiation conditions. Experiments have been performed on the DESIRS beamline at the SOLEIL synchrotron, delivering tunable VUV light, using the SPICES (Surface Processes and ICES) set-up. Compact amorphous solid water ice (H$_2$O and D$_2$O) has been irradiated from 7 to 13.5 eV. Quantitative yields have been obtained by detection in the gas phase with mass-spectrometry for sample temperatures ranging from 15 K to 100 K. Photodesorption spectra of H$_2$O (D$_2$O), OH (OD), H$_2$ (D$_2$) and O$_2$ peak around 9-10 eV and decrease at higher energies. Average photodesorption yields of intact water at 15 K are 5 $times$ 10$^{-4}$ molecule/photon for H$_2$O and 5 $times$ 10$^{-5}$ molecule/photon for D$_2$O over the 7-13.5 eV range. The strong isotopic effect can be explained by a differential chemical recombination between OH (OD) and H (D) photofragments originating from lower kinetic energy available for the OH photofragments upon direct water photodissociation and/or possibly by an electronic relaxation process. It is expected to contribute to water fractionation during the building-up of the ice grain mantles in molecular clouds and to favor OH-poor chemical environment in comet-formation regions of protoplanetary disks. The yields of all the detected species except OH (OD) are enhanced above (70 $pm$10) K, suggesting an ice restructuration at this temperature.
We investigated the behavior of H$_2$, main constituent of the gas phase in dense clouds, after collision with amorphous solid water (ASW) surfaces, one of the most abundant chemical species of interstellar ices. We developed a general framework to study the adsorption dynamics of light species on interstellar ices. We provide binding energies and their distribution, sticking probabilities for incident energies between 1 meV and 60 meV, and thermal sticking coefficients between 10 and 300 K for surface temperatures from 10 to 110 K. We found that the sticking probability depends strongly on the adsorbate kinetic energy and the surface temperature, but hardly on the angle of incidence. We observed finite sticking probabilities above the thermal desorption temperature. Adsorption and thermal desorption should be considered as separate events with separate time scales. Laboratory results for these species have shown a gap in the trends attributed to the differently employed experimental techniques. Our results complement observations and extend them, increasing the range of gas temperatures under consideration. We plan to employ our method to study a variety of adsorbates, including radical and charged species.
In the denser and colder ($leq$20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of sub-micron sized dust grains covered by several layers of Htextsubscript{2}O-dominated ices and dirtied by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its binding energy (BE) on ice surfaces. Thus, BEs are crucial parameters for the astrochemical models that aim to reproduce the observed evolution of the ISM chemistry. In general, BEs can be inferred either from experimental techniques or by theoretical computations. In this work, we present a reliable computational methodology to evaluate the BEs of a large set (21) of astrochemical relevant species. We considered different periodic surface models of both crystalline and amorphous nature to mimic the interstellar water ice mantles. Both models ensure that hydrogen bond cooperativity is fully taken into account at variance with the small ice cluster models. Density functional theory adopting both B3LYP-D3 and M06-2X functionals was used to predict the species/ice structure and their BE. As expected from the complexity of the ice surfaces, we found that each molecule can experience multiple BE values, which depend on its structure and position at the ice surface. A comparison of our computed data with literature data shows agreement in some cases and (large) differences in others. We discuss some astrophysical implications that show the importance of calculating BEs using more realistic interstellar ice surfaces to have reliable values for inclusion in the astrochemical models.
In the quest to understand the formation of the building blocks of life, amorphous solid water (ASW) is one of the most widely studied molecular systems. Indeed, ASW is ubiquitous in the cold interstellar medium (ISM), where ASW-coated dust grains provide a catalytic surface for solid phase chemistry, and is believed to be present in the Earths atmosphere at high altitudes. It has been shown that the ice surface adsorbs small molecules such as CO, N$_2$, or CH$_4$, most likely at OH groups dangling from the surface. Our study presents completely new insights concerning the behaviour of ASW upon selective infrared (IR) irradiation of its dangling modes. When irradiated, these surface H$_2$O molecules reorganise, predominantly forming a stabilised monomer-like water mode on the ice surface. We show that we systematically provoke hole-burning effects (or net loss of oscillators) at the wavelength of irradiation and reproduce the same absorbed water monomer on the ASW surface. Our study suggests that all dangling modes share one common channel of vibrational relaxation; the ice remains amorphous but with a reduced range of binding sites, and thus an altered catalytic capacity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا