Do you want to publish a course? Click here

Binding energies of interstellar molecules on crystalline and amorphous models of water ice by ab-initio calculations

57   0   0.0 ( 0 )
 Added by Stefano Ferrero
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the denser and colder ($leq$20 K) regions of the interstellar medium (ISM), near-infrared observations have revealed the presence of sub-micron sized dust grains covered by several layers of Htextsubscript{2}O-dominated ices and dirtied by the presence of other volatile species. Whether a molecule is in the gas or solid-phase depends on its binding energy (BE) on ice surfaces. Thus, BEs are crucial parameters for the astrochemical models that aim to reproduce the observed evolution of the ISM chemistry. In general, BEs can be inferred either from experimental techniques or by theoretical computations. In this work, we present a reliable computational methodology to evaluate the BEs of a large set (21) of astrochemical relevant species. We considered different periodic surface models of both crystalline and amorphous nature to mimic the interstellar water ice mantles. Both models ensure that hydrogen bond cooperativity is fully taken into account at variance with the small ice cluster models. Density functional theory adopting both B3LYP-D3 and M06-2X functionals was used to predict the species/ice structure and their BE. As expected from the complexity of the ice surfaces, we found that each molecule can experience multiple BE values, which depend on its structure and position at the ice surface. A comparison of our computed data with literature data shows agreement in some cases and (large) differences in others. We discuss some astrophysical implications that show the importance of calculating BEs using more realistic interstellar ice surfaces to have reliable values for inclusion in the astrochemical models.



rate research

Read More

We investigated the structural and dynamical properties of a tetrahedrally coordinated crystalline ice from first principles based on density functional theory within the generalized gradient approximation with the projected augmented wave method. First, we report the structural behaviour of ice at finite temperatures based on the analysis of radial distribution functions obtained by molecular dynamics simulations. The results show how the ordering of the hydrogen bonding breaks down in the tetrahedral network of ice with entropy increase in agreement with the neutron diffraction data. We also calculated the phonon spectra of ice in a 3x1x1 supercell by using the direct method. So far, due to the direct method used in this calculation, the phonon spectra is obtained without taking into account the effect of polarization arising from dipole-dipole interactions of water molecules which is expected to yield the splitting of longitudinal and transverse optic modes at the Gamma-point. The calculated longitudinal acoustic velocities from the initial slopes of the acoustic mode is in a reasonable agreement with the neutron scatering data. The analysis of the vibrational density of states shows the existence of a boson peak at low energy of translational region a characteristic common to amorphous systems.
Wannier tight-binding models are effective models constructed from first-principles calculations. As such, they bridge a gap between the accuracy of first-principles calculations and the computational simplicity of effective models. In this work, we extend the existing methodology of creating Wannier tight-binding models from first-principles calculations by introducing the symmetrization post-processing step, which enables the production of Wannier-like models that respect the symmetries of the considered crystal. Furthermore, we implement automatic workflows, which allow for producing a large number of tight-binding models for large classes of chemically and structurally similar compounds, or materials subject to external influence such as strain. As a particular illustration, these workflows are applied to strained III-V semiconductor materials. These results can be used for further study of topological phase transitions in III-V quantum wells.
583 - E. Dartois , B. Auge , P. Boduch 2015
Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices.
The binding energies of n < 100 carbon clusters are calculated using the ab-initio density functional theory code Quantum Espresso. Carbon cluster geometries are determined using several levels of classical techniques and further refined using density functional theory. The resulting energies are used to compute the work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen poor environments, such as the inner layers of core-collapse supernova and supernova remnants.
The PEO3:LiCF3SO3 polymer electrolyte has attracted significant research due to its enhanced stability at the lithium/polymer interface of high conductivity polymer batteries. Experimental studies have shown that, depending on the preparation conditions, both the PEO3:LiCF3SO3 crystalline complex and the PEO3:LiCF3SO3 amorphous phase can be formed. However, previous theoretical investigations focused on the short chain amorphous PEO3:LiCF3SO3 system. We report ab initio density-functional-theory calculations of crystalline PEO3:LiCF3SO3. The calculated results about the bonding configuration, electronic structures, and conductivity properties are in good agreement with the experimental measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا