Do you want to publish a course? Click here

Barrow black hole corrected-entropy model and Tsallis nonextensivity

52   0   0.0 ( 0 )
 Added by Jorge Ananias Neto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum scenario concerning Hawking radiation, gives us a precious clue that a black hole has its temperature directly connected to its area gravity and that its entropy is proportional to the horizon area. These results have shown that there exist a deep association between thermodynamics and gravity. The recently introduced Barrow formulation of back holes entropy, influenced by the spacetime geometry, shows the quantum fluctuations effects through Barrow exponent, $Delta$, where $Delta=0$ represents the usual spacetime and its maximum value, $Delta=1$, characterizes a fractal spacetime. The quantum fluctuations are responsible for such fractality. Loop quantum gravity approach provided the logarithmic corrections to the entropy. This correction arises from quantum and thermal equilibrium fluctuations. In this paper we have analyzed the nonextensive thermodynamical effects of the quantum fluctuations upon the geometry of a Barrow black hole. We discussed the Tsallis formulation of this logarithmically corrected Barrow entropy to construct the equipartition law. Besides, we obtained a master equation that provides the equipartition law for any value of the Tsallis $q$-parameter and we analyzed several different scenarios. After that, the heat capacity were calculated and the thermal stability analysis was carried out as a function of the main parameters, namely, one of the so-called pre-factors, $q$ and $Delta$.



rate research

Read More

We first give a way which satisfies the bidirectional derivation between the generalized uncertainty principle and the corrected entropy of black holes. By this way, the generalized uncertainty principle can be indirectly modified by some correction elements which are carrried by the corrected entropy. Then we put an entropy modified by quantum tunneling into the way, from which we get a new generalized uncertainty principle, and finally find the new one has a broader form and a stronger adaptability to the sign of parameter.
The Renyi and Tsallis entropies are discussed as possible alternatives to the Bekenstein-Hawking area-law entropy. It is pointed out how replacing the entropy notion, but not the Hawking temperature and the thermodynamical energy may render the whole black hole thermodynamics inconsistent. The possibility to relate the Renyi and Tsallis entropies with the quantum gravity corrected Bekenstein-Hawking entropy is discussed.
135 - A. Peltola , G. Kunstatter 2009
We show that a semi-classical polymerization of the interior of Schwarzschild black holes gives rise to a tantalizing candidate for a non-singular, single horizon black hole spacetime. The exterior has non-zero quantum stress energy but closely approximates the classical spacetime for macroscopic black holes. The interior exhibits a bounce at a microscopic scale and then expands indefinitely to a Kantowski-Sachs spacetime. Polymerization therefore removes the singularity and produces a scenario reminiscent of past proposals for universe creation via quantum effects inside a black hole.
We use Big Bang Nucleosynthesis (BBN) data in order to impose constraints on the exponent of Barrow entropy. The latter is an extended entropy relation arising from the incorporation of quantum-gravitational effects on the black-hole structure, parameterized effectively by the new parameter $Delta$. When considered in a cosmological framework and under the light of the gravity-thermodynamics conjecture, Barrow entropy leads to modified cosmological scenarios whose Friedmann equations contain extra terms. We perform a detailed analysis of the BBN era and we calculate the deviation of the freeze-out temperature comparing to the result of standard cosmology. We use the observationally determined bound on $ |frac{delta {T}_f}{{T}_f}|$ in order to extract the upper bound on $Delta$. As we find, the Barrow exponent should be inside the bound $Deltalesssim 1.4times 10^{-4}$ in order not to spoil the BBN epoch, which shows that the deformation from standard Bekenstein-Hawking expression should be small as expected.
We present modified cosmological scenarios that arise from the application of the gravity-thermodynamics conjecture, using the Barrow entropy instead of the usual Bekenstein-Hawking one. The former is a modification of the black hole entropy due to quantum-gravitational effects that deform the black-hole horizon by giving it an intricate, fractal structure. We extract modified cosmological equations which contain new extra terms that constitute an effective dark-energy sector, and which coincide with the usual Friedmann equations in the case where the new Barrow exponent acquires its Bekenstein-Hawking value. We present analytical expressions for the evolution of the effective dark energy density parameter, and we show that the universe undergoes through the usual matter and dark-energy epochs. Additionally, the dark-energy equation-of-state parameter is affected by the value of the Barrow deformation exponent and it can lie in the quintessence or phantom regime, or experience the phantom-divide crossing. Finally, at asymptotically large times the universe always results in the de-Sitter solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا