No Arabic abstract
We first give a way which satisfies the bidirectional derivation between the generalized uncertainty principle and the corrected entropy of black holes. By this way, the generalized uncertainty principle can be indirectly modified by some correction elements which are carrried by the corrected entropy. Then we put an entropy modified by quantum tunneling into the way, from which we get a new generalized uncertainty principle, and finally find the new one has a broader form and a stronger adaptability to the sign of parameter.
It has been known for many years that the leading correction to the black hole entropy is a logarithmic term, which is universal and closely related to conformal anomaly. A fully consistent analysis of this issue has to take quantum backreactions to the black hole geometry into account. However, it was always unclear how to naturally derive the modified black hole metric especially from an effective action, because the problem refers to the elusive non-locality of quantum gravity. In this paper, we show that this problem can be resolved within an effective field theory (EFT) framework of quantum gravity. Our work suggests that the EFT approach provides a powerful and self-consistent tool for studying the quantum gravitational corrections to black hole geometries and thermodynamics.
We study Quantum Gravity effects in cosmology, and in particular that of the Generalized Uncertainty Principle on the Friedmann equations. We show that the Generalized Uncertainty Principle induces variations of the energy density and pressure in the radiation-dominated era which provide a viable explanation for the observed baryon asymmetry in the Universe.
We review aspects of the thermodynamics of black holes and in particular take into account the fact that the quantum entanglement between the degrees of freedom of a scalar field, traced inside the event horizon, can be the origin of black hole entropy. The main reason behind such a plausibility is that the well-known Bekenstein-Hawking entropy-area proportionality -- the so-called `area law of black hole physics -- holds for entanglement entropy as well, provided the scalar field is in its ground state, or in other minimum uncertainty states, such as a generic coherent state or squeezed state. However, when the field is either in an excited state or in a state which is a superposition of ground and excited states, a power-law correction to the area law is shown to exist. Such a correction term falls off with increasing area, so that eventually the area law is recovered for large enough horizon area. On ascertaining the location of the microscopic degrees of freedom that lead to the entanglement entropy of black holes, it is found that although the degrees of freedom close to the horizon contribute most to the total entropy, the contributions from those that are far from the horizon are more significant for excited/superposed states than for the ground state. Thus, the deviations from the area law for excited/superposed states may, in a way, be attributed to the far-away degrees of freedom. Finally, taking the scalar field (which is traced over) to be massive, we explore the changes on the area law due to the mass. Although most of our computations are done in flat space-time with a hypothetical spherical region, considered to be the analogue of the horizon, we show that our results hold as well in curved space-times representing static asymptotically flat spherical black holes with single horizon.
We present a formalism which allows for the perturbative derivation of the Extended Uncertainty Principle (EUP) for arbitrary spatial curvature models and observers. Entering the realm of small position uncertainties, we derive a general asymptotic EUP. The leading 2nd order curvature induced correction is proportional to the Ricci scalar, while the 4th order correction features the 0th order Cartan invariant Psi^2 (a scalar quadratic in curvature tensors) and the curved space Laplacian of the Ricci scalar all of which are evaluated at the expectation value of the position operator, i.e. the expected position when performing a measurement. This result is first verified for previously derived homogeneous space models and then applied to other non-trivial curvature related effects such as inhomogeneities, rotation and an anisotropic stress fluid leading to black hole hair. Our main achievement combines the method we introduce with the Generalized Uncertainty Principle (GUP) by virtue of deformed commutators to formulate a generic form of what we call the Asymptotic Generalized Extended Uncertainty Principle (AGEUP).
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. These corrections generically violate the Equivalence Principle. The GUP has also been indirectly applied to the gravitational source by relating the GUP modified Hawking temperature to a deformation of the background metric. Such a deformed background metric determines new geodesic motions without violating the Equivalence Principle. We point out here that the two effects are mutually exclusive when compared with experimental bounds. Moreover, the former stems from modified Poisson brackets obtained from a wrong classical limit of the deformed canonical commutators.