Do you want to publish a course? Click here

NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling

72   0   0.0 ( 0 )
 Added by Gagandeep Singh
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Ongoing climate change calls for fast and accurate weather and climate modeling. However, when solving large-scale weather prediction simulations, state-of-the-art CPU and GPU implementations suffer from limited performance and high energy consumption. These implementations are dominated by complex irregular memory access patterns and low arithmetic intensity that pose fundamental challenges to acceleration. To overcome these challenges, we propose and evaluate the use of near-memory acceleration using a reconfigurable fabric with high-bandwidth memory (HBM). We focus on compound stencils that are fundamental kernels in weather prediction models. By using high-level synthesis techniques, we develop NERO, an FPGA+HBM-based accelerator connected through IBM CAPI2 (Coherent Accelerator Processor Interface) to an IBM POWER9 host system. Our experimental results show that NERO outperforms a 16-core POWER9 system by 4.2x and 8.3x when running two different compound stencil kernels. NERO reduces the energy consumption by 22x and 29x for the same two kernels over the POWER9 system with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt. We conclude that employing near-memory acceleration solutions for weather prediction modeling is promising as a means to achieve both high performance and high energy efficiency.



rate research

Read More

Ongoing climate change calls for fast and accurate weather and climate modeling. However, when solving large-scale weather prediction simulations, state-of-the-art CPU and GPU implementations suffer from limited performance and high energy consumption. These implementations are dominated by complex irregular memory access patterns and low arithmetic intensity that pose fundamental challenges to acceleration. To overcome these challenges, we propose and evaluate the use of near-memory acceleration using a reconfigurable fabric with high-bandwidth memory (HBM). We focus on compound stencils that are fundamental kernels in weather prediction models. By using high-level synthesis techniques, we develop NERO, an FPGA+HBM-based accelerator connected through IBM OCAPI (Open Coherent Accelerator Processor Interface) to an IBM POWER9 host system. Our experimental results show that NERO outperforms a 16-core POWER9 system by 5.3x and 12.7x when running two different compound stencil kernels. NERO reduces the energy consumption by 12x and 35x for the same two kernels over the POWER9 system with an energy efficiency of 1.61 GFLOPS/Watt and 21.01 GFLOPS/Watt. We conclude that employing near-memory acceleration solutions for weather prediction modeling is promising as a means to achieve both high performance and high energy efficiency.
Multi-port memory controllers (MPMCs) have become increasingly important in many modern applications due to the tremendous growth in bandwidth requirement. Many approaches so far have focused on improving either the memory access latency or the bandwidth utilization for specific applications. Moreover, the application systems are likely to require certain adjustments to connect with an MPMC, since the MPMC interface is limited to a single-clock and single data-width domain. In this paper, we propose efficient techniques to improve the flexibility, latency, and bandwidth of an MPMC. Firstly, MPMC interfaces employ a pair of dual-clock dual-port FIFOs at each port, so any multi-clock multi-data-width application system can connect to an MPMC without requiring extra resources. Secondly, memory access latency is significantly reduced because parallel FIFOs temporarily keep the data transfer between the application system and memory. Lastly, a proposed arbitration scheme, namely window-based first-come-first-serve, considerably enhances the bandwidth utilization. Depending on the applications, MPMC can be properly configured by updating several internal configuration registers. The experimental results in an Altera Cyclone FPGA prove that MPMC is fully operational at 150 MHz and supports up to 32 concurrent connections at various clocks and data widths. More significantly, achieved bandwidth utilization is approximately 93.2% of the theoretical bandwidth, and the access latency is minimized as compared to previous designs.
It remains a challenge to run Deep Learning in devices with stringent power budget in the Internet-of-Things. This paper presents a low-power accelerator for processing Deep Neural Networks in the embedded devices. The power reduction is realized by avoiding multiplications of near-zero valued data. The near-zero approximation and a dedicated Near-Zero Approximation Unit (NZAU) are proposed to predict and skip the near-zero multiplications under certain thresholds. Compared with skipping zero-valued computations, our design achieves 1.92X and 1.51X further reduction of the total multiplications in LeNet-5 and Alexnet respectively, with negligible lose of accuracy. In the proposed accelerator, 256 multipliers are grouped into 16 independent Processing Lanes (PL) to support up to 16 neuron activations simultaneously. With the help of data pre-processing and buffering in each PL, multipliers can be clock-gated in most of the time even the data is excessively streaming in. Designed and simulated in UMC 65 nm process, the accelerator operating at 500 MHz is $>$ 4X faster than the mobile GPU Tegra K1 in processing the fully-connected layer FC8 of Alexnet, while consuming 717X less energy.
Existing FPGA-based DNN accelerators typically fall into two design paradigms. Either they adopt a generic reusable architecture to support different DNN networks but leave some performance and efficiency on the table because of the sacrifice of design specificity. Or they apply a layer-wise tailor-made architecture to optimize layer-specific demands for computation and resources but loose the scalability of adaptation to a wide range of DNN networks. To overcome these drawbacks, this paper proposes a novel FPGA-based DNN accelerator design paradigm and its automation tool, called DNNExplorer, to enable fast exploration of various accelerator designs under the proposed paradigm and deliver optimized accelerator architectures for existing and emerging DNN networks. Three key techniques are essential for DNNExplorers improved performance, better specificity, and scalability, including (1) a unique accelerator design paradigm with both high-dimensional design space support and fine-grained adjustability, (2) a dynamic design space to accommodate different combinations of DNN workloads and targeted FPGAs, and (3) a design space exploration (DSE) engine to generate optimized accelerator architectures following the proposed paradigm by simultaneously considering both FPGAs computation and memory resources and DNN networks layer-wise characteristics and overall complexity. Experimental results show that, for the same FPGAs, accelerators generated by DNNExplorer can deliver up to 4.2x higher performances (GOP/s) than the state-of-the-art layer-wise pipelined solutions generated by DNNBuilder for VGG-like DNN with 38 CONV layers. Compared to accelerators with generic reusable computation units, DNNExplorer achieves up to 2.0x and 4.4x DSP efficiency improvement than a recently published accelerator design from academia (HybridDNN) and a commercial DNN accelerator IP (Xilinx DPU), respectively.
To speedup Deep Neural Networks (DNN) accelerator design and enable effective implementation, we propose HybridDNN, a framework for building high-performance hybrid DNN accelerators and delivering FPGA-based hardware implementations. Novel techniques include a highly flexible and scalable architecture with a hybrid Spatial/Winograd convolution (CONV) Processing Engine (PE), a comprehensive design space exploration tool, and a complete design flow to fully support accelerator design and implementation. Experimental results show that the accelerators generated by HybridDNN can deliver 3375.7 and 83.3 GOPS on a high-end FPGA (VU9P) and an embedded FPGA (PYNQ-Z1), respectively, which achieve a 1.8x higher performance improvement compared to the state-of-art accelerator designs. This demonstrates that HybridDNN is flexible and scalable and can target both cloud and embedded hardware platforms with vastly different resource constraints.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا