Do you want to publish a course? Click here

DNNExplorer: A Framework for Modeling and Exploring a Novel Paradigm of FPGA-based DNN Accelerator

83   0   0.0 ( 0 )
 Added by Xiaofan Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Existing FPGA-based DNN accelerators typically fall into two design paradigms. Either they adopt a generic reusable architecture to support different DNN networks but leave some performance and efficiency on the table because of the sacrifice of design specificity. Or they apply a layer-wise tailor-made architecture to optimize layer-specific demands for computation and resources but loose the scalability of adaptation to a wide range of DNN networks. To overcome these drawbacks, this paper proposes a novel FPGA-based DNN accelerator design paradigm and its automation tool, called DNNExplorer, to enable fast exploration of various accelerator designs under the proposed paradigm and deliver optimized accelerator architectures for existing and emerging DNN networks. Three key techniques are essential for DNNExplorers improved performance, better specificity, and scalability, including (1) a unique accelerator design paradigm with both high-dimensional design space support and fine-grained adjustability, (2) a dynamic design space to accommodate different combinations of DNN workloads and targeted FPGAs, and (3) a design space exploration (DSE) engine to generate optimized accelerator architectures following the proposed paradigm by simultaneously considering both FPGAs computation and memory resources and DNN networks layer-wise characteristics and overall complexity. Experimental results show that, for the same FPGAs, accelerators generated by DNNExplorer can deliver up to 4.2x higher performances (GOP/s) than the state-of-the-art layer-wise pipelined solutions generated by DNNBuilder for VGG-like DNN with 38 CONV layers. Compared to accelerators with generic reusable computation units, DNNExplorer achieves up to 2.0x and 4.4x DSP efficiency improvement than a recently published accelerator design from academia (HybridDNN) and a commercial DNN accelerator IP (Xilinx DPU), respectively.



rate research

Read More

To speedup Deep Neural Networks (DNN) accelerator design and enable effective implementation, we propose HybridDNN, a framework for building high-performance hybrid DNN accelerators and delivering FPGA-based hardware implementations. Novel techniques include a highly flexible and scalable architecture with a hybrid Spatial/Winograd convolution (CONV) Processing Engine (PE), a comprehensive design space exploration tool, and a complete design flow to fully support accelerator design and implementation. Experimental results show that the accelerators generated by HybridDNN can deliver 3375.7 and 83.3 GOPS on a high-end FPGA (VU9P) and an embedded FPGA (PYNQ-Z1), respectively, which achieve a 1.8x higher performance improvement compared to the state-of-art accelerator designs. This demonstrates that HybridDNN is flexible and scalable and can target both cloud and embedded hardware platforms with vastly different resource constraints.
Molecular similarity search has been widely used in drug discovery to identify structurally similar compounds from large molecular databases rapidly. With the increasing size of chemical libraries, there is growing interest in the efficient acceleration of large-scale similarity search. Existing works mainly focus on CPU and GPU to accelerate the computation of the Tanimoto coefficient in measuring the pairwise similarity between different molecular fingerprints. In this paper, we propose and optimize an FPGA-based accelerator design on exhaustive and approximate search algorithms. On exhaustive search using BitBound & folding, we analyze the similarity cutoff and folding level relationship with search speedup and accuracy, and propose a scalable on-the-fly query engine on FPGAs to reduce the resource utilization and pipeline interval. We achieve a 450 million compounds-per-second processing throughput for a single query engine. On approximate search using hierarchical navigable small world (HNSW), a popular algorithm with high recall and query speed. We propose an FPGA-based graph traversal engine to utilize a high throughput register array based priority queue and fine-grained distance calculation engine to increase the processing capability. Experimental results show that the proposed FPGA-based HNSW implementation has a 103385 query per second (QPS) on the Chembl database with 0.92 recall and achieves a 35x speedup than the existing CPU implementation on average. To the best of our knowledge, our FPGA-based implementation is the first attempt to accelerate molecular similarity search algorithms on FPGA and has the highest performance among existing approaches.
Accelerating tensor applications on spatial architectures provides high performance and energy-efficiency, but requires accurate performance models for evaluating various dataflow alternatives. Such modeling relies on the notation of tensor dataflow and the formulation of performance metrics. Recent proposed compute-centric and data-centric notations describe the dataflow using imperative directives. However, these two notations are less expressive and thus lead to limited optimization opportunities and inaccurate performance models. In this paper, we propose a framework TENET that models hardware dataflow of tensor applications. We start by introducing a relation-centric notation, which formally describes the hardware dataflow for tensor computation. The relation-centric notation specifies the hardware dataflow, PE interconnection, and data assignment in a uniform manner using relations. The relation-centric notation is more expressive than the compute-centric and data-centric notations by using more sophisticated affine transformations. Another advantage of relation-centric notation is that it inherently supports accurate metrics estimation, including data reuse, bandwidth, latency, and energy. TENET computes each performance metric by counting the relations using integer set structures and operators. Overall, TENET achieves 37.4% and 51.4% latency reduction for CONV and GEMM kernels compared with the state-of-the-art data-centric notation by identifying more sophisticated hardware dataflows.
Ongoing climate change calls for fast and accurate weather and climate modeling. However, when solving large-scale weather prediction simulations, state-of-the-art CPU and GPU implementations suffer from limited performance and high energy consumption. These implementations are dominated by complex irregular memory access patterns and low arithmetic intensity that pose fundamental challenges to acceleration. To overcome these challenges, we propose and evaluate the use of near-memory acceleration using a reconfigurable fabric with high-bandwidth memory (HBM). We focus on compound stencils that are fundamental kernels in weather prediction models. By using high-level synthesis techniques, we develop NERO, an FPGA+HBM-based accelerator connected through IBM CAPI2 (Coherent Accelerator Processor Interface) to an IBM POWER9 host system. Our experimental results show that NERO outperforms a 16-core POWER9 system by 4.2x and 8.3x when running two different compound stencil kernels. NERO reduces the energy consumption by 22x and 29x for the same two kernels over the POWER9 system with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt. We conclude that employing near-memory acceleration solutions for weather prediction modeling is promising as a means to achieve both high performance and high energy efficiency.
127 - Jie Zhang , Myoungsoo Jung 2018
Energy efficiency and computing flexibility are some of the primary design constraints of heterogeneous computing. In this paper, we present FlashAbacus, a data-processing accelerator that self-governs heterogeneous kernel executions and data storage accesses by integrating many flash modules in lightweight multiprocessors. The proposed accelerator can simultaneously process data from different applications with diverse types of operational functions, and it allows multiple kernels to directly access flash without the assistance of a host-level file system or an I/O runtime library. We prototype FlashAbacus on a multicore-based PCIe platform that connects to FPGA-based flash controllers with a 20 nm node process. The evaluation results show that FlashAbacus can improve the bandwidth of data processing by 127%, while reducing energy consumption by 78.4%, as compared to a conventional method of heterogeneous computing. blfootnote{This paper is accepted by and will be published at 2018 EuroSys. This document is presented to ensure timely dissemination of scholarly and technical work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا