Do you want to publish a course? Click here

Detection & imaging with Leak Microstructures

102   0   0.0 ( 0 )
 Added by Mariano Lombardi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Results obtained with a new very compact detector for imaging with a matrix of Leak Microstructures (LM)are reported. Spatial linearity and spatial resolution obtained by scanning as well as the detection of alpha particles with 100% efficiency, when compared with a silicon detector, are stressed. Preliminary results recently obtained in detecting single electrons emitted by heated filament (Ec < 1 eV) at 1-3 mbar of propane are reported.



rate research

Read More

We present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ~1 mCi Cf-252 radiological source at 100 m standoff with 90% detection efficiency and 10% false positives against background in 12 min. This same detection efficiency is met at 15 s for a 40 m standoff, and 1.2 s for a 20 m standoff.
The India-based Neutrino Observatory Project (INO) is a proposed underground high energy physics experiment at Theni, India to study the neutrino oscillation parameters using atmospheric neutrinos. The 50 kton magnetised INO-ICAL detector will require approximately 30,000 of 2m$times$2m Resistive Plate Chambers (RPC) as sensitive detectors and proposed to operate for about 20 years. For success of the experiment, each of the RPCs has to function without showing any significant aging during the period of operation. Hence, various tests including a proper leak test are performed during and after production. The methods of leak rate calculation using conventional manometer are valid only when both the volume of the test subject and ambient pressure are kept constant. But both these quantities for a RPC gas gap depend widely on the ambient pressure and temperature. A proper quantitative estimation of the leak rate cannot be acquired from such pressure measurements. By monitoring the absolute pressures, both outside and inside of an RPC, along with the temperature, its leakage rate can be estimated. During the test period, the supporting button spacers inside an RPC may get detached due to manufacturing defect. This effect also needs to be detected.
Muon tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons is a promising technique for detecting and imaging heavily shielded high-Z nuclear materials such as enriched uranium. This technique could complement standard radiation detection portals currently deployed at international borders and ports, which are not very sensitive to heavily shielded nuclear materials. We image small targets in 3D using $2times 2 times 2 mm^3$ voxels with a minimal muon tomography station prototype that tracks muons with Gas Electron Multiplier (GEM) detectors read out in 2D with x-y microstrips of 400 micron pitch. With preliminary electronics, the GEM detectors achieve a spatial resolution of 130 microns in both dimensions. With the next GEM-based prototype station we plan to probe an active volume of ~27 liters. We present first results on reading out all 1536 microstrips of a $30 times 30 cm^2$ GEM detector for the next muon tomography prototype with final frontend electronics and DAQ system. This constitutes the first full-size implementation of the Scalable Readout System (SRS) recently developed specifically for Micropattern Gas Detectors by the RD51 collaboration. Design of the SRS and first performance results when reading out GEM detectors are presented.
Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 $mu$m has been achieved, which is equivalent to an UCN energy resolution below 2 pico-electron-volts through the relation $delta E = m_0g delta x$. Here, the symbols $delta E$, $delta x$, $m_0$ and $g$ are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. This method allows different types of UCN spectroscopy and other applications.
In this paper we propose a new method for measuring the cross section of low yield nuclear reactions by capturing the products in a cryogenically frozen noble gas solid. Once embedded in the noble gas solid, which is optically transparent, the product atoms can be selectively identified by laser induced fluorescence and individually counted via optical imaging to determine the cross section. Single atom sensitivity by optical imaging is feasible because the surrounding lattice of noble gas atoms facilitates a large wavelength shift between the excitation and emission spectrum of the product atoms. The tools and techniques from the fields of single molecule spectroscopy and superresolution imaging in combination with an electromagnetic recoil separator, for beam and isotopic differentiation, allow for a detection scheme with near unity efficiency, a high degree of selectivity, and single atom sensitivity. This technique could be used to determine a number of astrophysically important nuclear reaction rates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا