No Arabic abstract
We present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ~1 mCi Cf-252 radiological source at 100 m standoff with 90% detection efficiency and 10% false positives against background in 12 min. This same detection efficiency is met at 15 s for a 40 m standoff, and 1.2 s for a 20 m standoff.
The COSINE-100 experiment is designed to test the DAMA experiment which claimed an observation of a dark matter signal from an annual modulation in their residual event rate. To measure the 1 %-level signal amplitude, it is crucial to control and monitor nearly all environmental quantities that might systematically mimic the signal. The environmental monitoring also helps ensure a stable operation of the experiment. Here, we describe the design and performance of the centralized environmental monitoring system for the COSINE-100 experiment.
Results obtained with a new very compact detector for imaging with a matrix of Leak Microstructures (LM)are reported. Spatial linearity and spatial resolution obtained by scanning as well as the detection of alpha particles with 100% efficiency, when compared with a silicon detector, are stressed. Preliminary results recently obtained in detecting single electrons emitted by heated filament (Ec < 1 eV) at 1-3 mbar of propane are reported.
Electro-optical detection has proven to be a valuable technique to study temporal profiles of THz pulses with pulse durations down to femtoseconds. As the Coulomb field around a relativistic electron bunch resembles the current profile, electro-optical detection can be exploited for non-invasive bunch length measurements at accelerators. We have developed a very compact and robust electro-optical detection system based on spectral decoding for bunch length monitoring at the European XFEL with single-shot resolution better than 200~fs. Apart from the GaP crystal and the corresponding laser optics at the electron beamline, all components are housed in 19 chassis for rack mount and remote operation inside the accelerator tunnel. An advanced laser synchronization scheme based on radio-frequency down-conversion has been developed for locking a custom-made Yb-fiber laser to the radio-frequency of the European XFEL accelerator. In order to cope with the high bunch repetition rate of the superconducting accelerator, a novel linear array detector (KALYPSO) has been employed for spectral measurements of the Yb-fiber laser pulses at frame rates of up to 2.26~MHz. In this paper, we describe all sub-systems of the electro-optical detection system as well as the measurement procedure in detail, and discuss first measurement results of longitudinal bunch profiles of around 400~fs (rms) with an arrival-time jitter of 35~fs (rms).
A simple X-ray imaging system using off-the-shelf electronics and simple reconstruction algorithms aiming a spatial resolution of 1.7 mm ($sim 3,%$ of the detector length) is described in this work. For this, two 100 cm$^2$ Gas Electron Multiplier (GEM) foils with a thickness of 100 mu m (2-fold thicker than the standard ones) were immersed in a mixture of argon and carbon dioxide (70:30). The charge readout with 2D position determination was done with resistive charge division. Due to their higher thickness with respect to the standard GEMs, the 100 mu m thick GEM foils were found to be less prone to damage caused by the electrical discharges. X-ray images are shown and some descriptions of the physical processes involved are presented. We describe the advantages of this method that allows counting each X-ray photon or particle entering the detector, its interaction position, as well as measuring of its energy. The results of our present work show a position resolution below 2 mm, being limited by the gas mixture used, and not the detecting system, with a very good cost effectiveness. Future work is being carried out to optimize the present system for a medical application as a proton beam monitor.
COSINE-100 is a dark matter direct detection experiment designed to test the annual modulation signal observed by the DAMA/LIBRA experiment. COSINE-100 consists of 8 NaI(Tl) crystals with a total mass of 106 kg, a 2200 L liquid scintillator veto, and 37 muon detector panels. We present details of the data acquisition system of COSINE-100, including waveform storage using flash analog-to-digital converters for crystal events and integrated charge storage using charge-sensitive analog-to-digital converters for liquid scintillator and plastic scintillator muon veto events. We also discuss several trigger conditions developed in order to distinguish signal events from photomultiplier noise events. The total trigger rate observed for the crystal/liquid scintillator (plastic scintillator) detector is 15 Hz (24 Hz).