Do you want to publish a course? Click here

Leak Test of Resistive Plate Chamber Gap by Monitoring Absolute Pressure

77   0   0.0 ( 0 )
 Added by Suryanarayan Mondal
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The India-based Neutrino Observatory Project (INO) is a proposed underground high energy physics experiment at Theni, India to study the neutrino oscillation parameters using atmospheric neutrinos. The 50 kton magnetised INO-ICAL detector will require approximately 30,000 of 2m$times$2m Resistive Plate Chambers (RPC) as sensitive detectors and proposed to operate for about 20 years. For success of the experiment, each of the RPCs has to function without showing any significant aging during the period of operation. Hence, various tests including a proper leak test are performed during and after production. The methods of leak rate calculation using conventional manometer are valid only when both the volume of the test subject and ambient pressure are kept constant. But both these quantities for a RPC gas gap depend widely on the ambient pressure and temperature. A proper quantitative estimation of the leak rate cannot be acquired from such pressure measurements. By monitoring the absolute pressures, both outside and inside of an RPC, along with the temperature, its leakage rate can be estimated. During the test period, the supporting button spacers inside an RPC may get detached due to manufacturing defect. This effect also needs to be detected.



rate research

Read More

246 - Ushasi Datta 2015
A prototype of Multi-strip Multi-gap Resistive Plate chamber (MMRPC) with active area 40 cm $times$ 20 cm has been developed at SINP, Kolkata. Detailed response of the developed detector was studied with the pulsed electron beam from ELBE at Helmholtz-Zentrum Dresden-Rossendorf. In this report the response of SINP developed MMRPC with different controlling parameters is described in details. The obtained time resolution ($sigma_t$) of the detector after slew correction was 91.5$ pm $3 ps. Position resolution measured along ($sigma_x$) and across ($sigma_y$) the strip was 2.8$pm$0.6 cm and 0.58 cm, respectively. The measured absolute efficiency of the detector for minimum ionizing particle like electron was 95.8$pm$1.3 $%$. Better timing resolution of the detector can be achieved by restricting the events to a single strip. The response of the detector was mainly in avalanche mode but a few percentage of streamer mode response was also observed. A comparison of the response of these two modes with trigger rate was studied
The Multi-gap Resistive Plate Chamber (MRPC) is an advanced form of Resistive Plate Chamber (RPC) detector where the gas gap is divided into sub-gaps. MRPCs are known for their good time resolution and detection efficiency for charged particles. They have found suitable applications in several high energy physics experiments like ALICE in LHC, CERN, Geneva, Switzerland, and STAR in RHIC, BNL, USA. As they have very good time resolution and are of low cost, they can be a suitable replacement for very expensive scintillators used in Positron Emission Tomography Imaging. The MRPCs that are being used nowadays are developed with glass electrodes. We have made an attempt to develop a 6-gap MRPC using bakelite electrodes. The outer electrodes are of dimensions 15 cm $times$ 15 cm $times$ 0.3 cm and the inner electrodes are of dimension 14 cm $times$ 14 cm $times$ 0.05 cm. The glossy finished electrode surfaces have not been treated with any oil like linseed, silicone for smoothness. The performance of the detector has been studied measuring the efficiency, noise rate and time resolution with cosmic rays. This effort is towards the development of a prototype for Positron Emission Tomography with the Time-Of-Flight technique using MRPCs. Details of the development procedure and performance studies have been presented here.
305 - Z.Deng , Y.Li , Y.Wang 2016
The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. To be able to study the performance of such a calorimeter in future experiments it is important to ensure reliable simulation of its response. In this paper we present our prototype simulation performed with GEANT4 and the digitization procedure achieved with an algorithm called SimDigital. A detailed description of this algorithm is given and the methods to determinate its parameters using muon tracks and electromagnetic showers are explained. The comparison with hadronic shower data shows a good agreement up to 50 GeV. Discrepancies are observed at higher energies. The reasons for these differences are investigated.
University of Sofia, Faculty of Physics, Atomic Physics Department, 5, James Bourchier Boulevard, BG-1164 Sofia, Bulgaria Ghent University, Department of Physics and Astronomy, Proeftuinstraat 86, BE-9000 Ghent, Belgium Bulgarian Academy of Sciences, Inst. for Nucl. Res. and Nucl. Energy, Tzarigradsko shaussee Boulevard 72, BG-1784 Sofia, Bulgaria Peking University, Department of Technical Physics, CN-100 871 Beijing, China Universidad de Los Andes, Apartado Aereo 4976, Carrera 1E, no. 18A 10, CO-Bogota, Colombia Academy of Scientific Research and Technology of the Arab Republic of Egypt, 101 Sharia Kasr El-Ain, Cairo, Egypt Panjab University, Department of Physics, Chandigarh Mandir 160 014, India Universita e INFN, Sezione di Bari, Via Orabona 4, IT-70126 Bari, Italy INFN, Laboratori Nazionali di Frascati, PO Box 13, Via Enrico Fermi 40, IT-00044 Frascati, Italy Universita e INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, Via Cintia, IT-80126 Napoli, Italy Universita e INFN, Sezione di Pavia, Via Bassi 6, IT-Pavia, Italy Department of Physics and Korea Detector Laboratory, Korea University, Aman-dong 5-ga, Sungbuk-gu, Seou,l Republic of Korea Sungkyunkwan University, Department of Physics 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-Do, Republic of Korea
Time of flight of a minimum ionizing particle along a fixed base has been measured with a 100 ps accuracy by means of a Dielectric Resistive Plate Chamber (DRPC) with 4 x 0.3 mm gas gaps. DRPC timing characteristics have been studied with different applied voltages, discriminating thresholds and beam intensities. It may be stated that the time-of-flight resolution of gaseous detectors developed within the ALICE experiment has reached the level of the best known scintillation counters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا