Do you want to publish a course? Click here

Low Energy Light Yield of Fast Plastic Scintillators

112   0   0.0 ( 0 )
 Added by Thibault Laplace
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Compact neutron imagers using double-scatter kinematic reconstruction are being designed for localization and characterization of special nuclear material. These neutron imaging systems rely on scintillators with a rapid prompt temporal response as the detection medium. As n-p elastic scattering is the primary mechanism for light generation by fast neutron interactions in organic scintillators, proton light yield data are needed for accurate assessment of scintillator performance. The proton light yield of a series of commercial fast plastic organic scintillators---EJ-200, EJ-204, and EJ-208---was measured via a double time-of-flight technique at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Using a tunable deuteron breakup neutron source, target scintillators housed in a dual photomultiplier tube configuration, and an array of pulse-shape-discriminating observation scintillators, the fast plastic scintillator light yield was measured over a broad and continuous energy range down to proton recoil energies of approximately 50 keV. This work provides key input to event reconstruction algorithms required for utilization of these materials in emerging neutron imaging modalities.



rate research

Read More

88 - J. J. Manfredi 2021
Plastic organic scintillators have been tailored in composition to achieve ultra-fast temporal response, thereby enabling the design and development of fast neutron detection systems with high timing resolution. Eljen Technologys plastic organic scintillators -- EJ-230, EJ-232, and EJ-232Q -- are prospective candidates for use in emerging neutron imaging systems, where fast timing is paramount. To support the neutron response characterization of these materials, the relative proton light yields of EJ-230, EJ-232, and EJ-232Q were measured at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Using a broad-spectrum neutron source and a double time-of-flight technique, the proton light yield relations were obtained over a proton recoil energy range of approximately 300 keV to 4 MeV. The EJ-230, EJ-232, and EJ-232Q scintillators exhibited similar proton light yield relations to each other as well as to other plastic scintillators with the same polymer base material. A comparison of the relative proton light yield of different sized cylindrical EJ-232 and EJ-232Q scintillators also revealed consistent results. This work provides key input data for the realistic computational modeling of neutron detection technologies employing these materials, thereby supporting new capabilities in near-field radionuclide detection for national security applications.
102 - J. A. Brown 2020
Recent progress in the development of novel organic scintillators necessitates modern characterization capabilities. As the primary means of energy deposition by neutrons in these materials is n-p elastic scattering, knowledge of the proton light yield is paramount. This work establishes a new model-independent method to continuously measure proton light yield in organic scintillators over a broad energy range. Using a deuteron breakup neutron source at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and an array of organic scintillators, the proton light yield of EJ-301 and EJ-309, commercially available organic liquid scintillators from Eljen Technology, were measured via a double time-of-flight technique. The light yield was determined using a kinematically over-constrained system in the proton energy range of 1-20 MeV. The effect of pulse integration length on the magnitude and shape of the proton light yield relation was also explored. This work enables accurate simulation of the performance of advanced neutron detectors and supports the development of next-generation neutron imaging systems.
A comparative study of the neutron-$gamma$ Pulse Shape Discrimination (PSD) with seven organic scintillators is performed using an identical setup and digital electronics. The scintillators include plastics (EJ-299-33 and a plastic prototype), single crystals (stilbene and the recent doped $p$-terphenyl) and liquids (BC501A, NE213 and the deuterated liquid BC537). First, the overall PSD performance of the different scintillators is compared and threshold neutron energies for a given discrimination quality are determined. Then, using statistical arguments, two intrinsic contributions to the PSD capability of the scintillating materials are disentangled: the light yield and the specific pulse shapes induced by neutrons and $gamma$-rays. This separation provides additional insight into the behaviour of organic scintillators and allows a detailed comparison of the discrimination performance of the various materials. On the basis of this analysis, limitations of current organic scintillators and of recently proposed alternative scintillators are discussed.
The scintillation light output of a pure and a Thallium doped Sodium Iodide (NaI) crystal under irradiation with 5.486MeV alpha -particles has been measured over a temperature range from 1.7K to 300K. Estimates of the decay time constant at three selected temperatures are given. For pure NaI an increase in light yield towards low temperatures could be confirmed and measured at higher precision. For NaI(Tl) below 60K an increase in light output has been found.
The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The dis- cussed detector offers improvement of the Time of Flight (TOF) resolution due to the use of fast plastic scintillators and dedicated electronics allowing for sam- pling in the voltage domain of signals with durations of few nanoseconds. In this paper we show that recovery of the whole signal, based on only a few samples, is possible. In order to do that, we incorporate the training signals into the Tikhonov regularization framework and we perform the Principal Component Analysis decomposition, which is well known for its compaction properties. The method yields a simple closed form analytical solution that does not require iter- ative processing. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This is the key to introduce and prove the formula for calculations of the signal recovery error. In this paper we show that an average recovery error is approximately inversely proportional to the number of acquired samples.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا