Do you want to publish a course? Click here

Towards Equivalent Transformation of User Preferences in Cross Domain Recommendation

176   0   0.0 ( 0 )
 Added by Xu Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Cross domain recommendation (CDR) has been proposed to tackle the data sparsity problem in recommender systems. This paper focuses on a common scenario for CDR where different domains share the same set of users but no overlapping items. The majority of recent methods have explored shared-user representation to transfer knowledge across different domains. However, the idea of shared-user representation resorts to learn the overlapped properties of user preferences across different domains and suppresses the domain-specific properties of user preferences. In this paper, we attempt to learn both properties of user preferences for CDR, i.e. capturing both the overlapped and domain-specific properties. In particular, we assume that each users preferences in one domain can be expressed by the other one, and these preferences can be mutually converted to each other with the so-called equivalent transformations. Based on this assumption, we propose an equivalent transformation learner (ETL) which models the joint distribution of user behaviors across different domains. The equivalent transformations in ETL relax the idea of shared-user representation and allow the learned preferences in different domains to have the capacity of preserving the domain-specific properties as well as the overlapped properties. Extensive experiments on three public benchmarks demonstrate the effectiveness of ETL compared with recent state-of-the-art methods.



rate research

Read More

In this paper, we propose a two-stage ranking approach for recommending linear TV programs. The proposed approach first leverages user viewing patterns regarding time and TV channels to identify potential candidates for recommendation and then further leverages user preferences to rank these candidates given textual information about programs. To evaluate the method, we conduct empirical studies on a real-world TV dataset, the results of which demonstrate the superior performance of our model in terms of both recommendation accuracy and time efficiency.
To address the long-standing data sparsity problem in recommender systems (RSs), cross-domain recommendation (CDR) has been proposed to leverage the relatively richer information from a richer domain to improve the recommendation performance in a sparser domain. Although CDR has been extensively studied in recent years, there is a lack of a systematic review of the existing CDR approaches. To fill this gap, in this paper, we provide a comprehensive review of existing CDR approaches, including challenges, research progress, and future directions. Specifically, we first summarize existing CDR approaches into four types, including single-target CDR, multi-domain recommendation, dual-target CDR, and multi-target CDR. We then present the definitions and challenges of these CDR approaches. Next, we propose a full-view categorization and new taxonomies on these approaches and report their research progress in detail. In the end, we share several promising research directions in CDR.
As a highly data-driven application, recommender systems could be affected by data bias, resulting in unfair results for different data groups, which could be a reason that affects the system performance. Therefore, it is important to identify and solve the unfairness issues in recommendation scenarios. In this paper, we address the unfairness problem in recommender systems from the user perspective. We group users into advantaged and disadvantaged groups according to their level of activity, and conduct experiments to show that current recommender systems will behave unfairly between two groups of users. Specifically, the advantaged users (active) who only account for a small proportion in data enjoy much higher recommendation quality than those disadvantaged users (inactive). Such bias can also affect the overall performance since the disadvantaged users are the majority. To solve this problem, we provide a re-ranking approach to mitigate this unfairness problem by adding constraints over evaluation metrics. The experiments we conducted on several real-world datasets with various recommendation algorithms show that our approach can not only improve group fairness of users in recommender systems, but also achieve better overall recommendation performance.
153 - Lei Chen , Fajie Yuan , Jiaxi Yang 2021
Making accurate recommendations for cold-start users has been a longstanding and critical challenge for recommender systems (RS). Cross-domain recommendations (CDR) offer a solution to tackle such a cold-start problem when there is no sufficient data for the users who have rarely used the system. An effective approach in CDR is to leverage the knowledge (e.g., user representations) learned from a related but different domain and transfer it to the target domain. Fine-tuning works as an effective transfer learning technique for this objective, which adapts the parameters of a pre-trained model from the source domain to the target domain. However, current methods are mainly based on the global fine-tuning strategy: the decision of which layers of the pre-trained model to freeze or fine-tune is taken for all users in the target domain. In this paper, we argue that users in RS are personalized and should have their own fine-tuning policies for better preference transfer learning. As such, we propose a novel User-specific Adaptive Fine-tuning method (UAF), selecting which layers of the pre-trained network to fine-tune, on a per-user basis. Specifically, we devise a policy network with three alternative strategies to automatically decide which layers to be fine-tuned and which layers to have their parameters frozen for each user. Extensive experiments show that the proposed UAF exhibits significantly better and more robust performance for user cold-start recommendation.
Recently, recommender systems that aim to suggest personalized lists of items for users to interact with online have drawn a lot of attention. In fact, many of these state-of-the-art techniques have been deep learning based. Recent studies have shown that these deep learning models (in particular for recommendation systems) are vulnerable to attacks, such as data poisoning, which generates users to promote a selected set of items. However, more recently, defense strategies have been developed to detect these generated users with fake profiles. Thus, advanced injection attacks of creating more `realistic user profiles to promote a set of items is still a key challenge in the domain of deep learning based recommender systems. In this work, we present our framework CopyAttack, which is a reinforcement learning based black-box attack method that harnesses real users from a source domain by copying their profiles into the target domain with the goal of promoting a subset of items. CopyAttack is constructed to both efficiently and effectively learn policy gradient networks that first select, and then further refine/craft, user profiles from the source domain to ultimately copy into the target domain. CopyAttacks goal is to maximize the hit ratio of the targeted items in the Top-$k$ recommendation list of the users in the target domain. We have conducted experiments on two real-world datasets and have empirically verified the effectiveness of our proposed framework and furthermore performed a thorough model analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا