No Arabic abstract
Few-shot learning is a challenging task, which aims to learn a classifier for novel classes with few examples. Pre-training based meta-learning methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning. However, results show that the fine-tuning step makes very marginal improvements. In this paper, 1) we figure out the key reason, i.e., in the pre-trained feature space, the base classes already form compact clusters while novel classes spread as groups with large variances, which implies that fine-tuning the feature extractor is less meaningful; 2) instead of fine-tuning the feature extractor, we focus on estimating more representative prototypes during meta-learning. Consequently, we propose a novel prototype completion based meta-learning framework. This framework first introduces primitive knowledge (i.e., class-level part or attribute annotations) and extracts representative attribute features as priors. Then, we design a prototype completion network to learn to complete prototypes with these priors. To avoid the prototype completion error caused by primitive knowledge noises or class differences, we further develop a Gaussian based prototype fusion strategy that combines the mean-based and completed prototypes by exploiting the unlabeled samples. Extensive experiments show that our method: (i) can obtain more accurate prototypes; (ii) outperforms state-of-the-art techniques by 2% - 9% in terms of classification accuracy. Our code is available online.
Few-shot learning aims to recognize novel classes with few examples. Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning. However, results show that the fine-tuning step makes marginal improvements. In this paper, 1) we figure out the reason, i.e., in the pre-trained feature space, the base classes already form compact clusters while novel classes spread as groups with large variances, which implies that fine-tuning feature extractor is less meaningful; 2) instead of fine-tuning feature extractor, we focus on estimating more representative prototypes. Consequently, we propose a novel prototype completion based meta-learning framework. This framework first introduces primitive knowledge (i.e., class-level part or attribute annotations) and extracts representative features for seen attributes as priors. Second, a part/attribute transfer network is designed to learn to infer the representative features for unseen attributes as supplementary priors. Finally, a prototype completion network is devised to learn to complete prototypes with these priors. Moreover, to avoid the prototype completion error, we further develop a Gaussian based prototype fusion strategy that fuses the mean-based and completed prototypes by exploiting the unlabeled samples. Extensive experiments show that our method: (i) obtains more accurate prototypes; (ii) achieves superior performance on both inductive and transductive FSL settings.
Few-shot learning requires to recognize novel classes with scarce labeled data. Prototypical network is useful in existing researches, however, training on narrow-size distribution of scarce data usually tends to get biased prototypes. In this paper, we figure out two key influencing factors of the process: the intra-class bias and the cross-class bias. We then propose a simple yet effective approach for prototype rectification in transductive setting. The approach utilizes label propagation to diminish the intra-class bias and feature shifting to diminish the cross-class bias. We also conduct theoretical analysis to derive its rationality as well as the lower bound of the performance. Effectiveness is shown on three few-shot benchmarks. Notably, our approach achieves state-of-the-art performance on both miniImageNet (70.31% on 1-shot and 81.89% on 5-shot) and tieredImageNet (78.74% on 1-shot and 86.92% on 5-shot).
Most recent few-shot learning (FSL) methods are based on meta-learning with episodic training. In each meta-training episode, a discriminative feature embedding and/or classifier are first constructed from a support set in an inner loop, and then evaluated in an outer loop using a query set for model updating. This query set sample centered learning objective is however intrinsically limited in addressing the lack of training data problem in the support set. In this paper, a novel contrastive prototype learning with augmented embeddings (CPLAE) model is proposed to overcome this limitation. First, data augmentations are introduced to both the support and query sets with each sample now being represented as an augmented embedding (AE) composed of concatenated embeddings of both the original and augment
Few-Shot Learning (FSL) aims to improve a models generalization capability in low data regimes. Recent FSL works have made steady progress via metric learning, meta learning, representation learning, etc. However, FSL remains challenging due to the following longstanding difficulties. 1) The seen and unseen classes are disjoint, resulting in a distribution shift between training and testing. 2) During testing, labeled data of previously unseen classes is sparse, making it difficult to reliably extrapolate from labeled support examples to unlabeled query examples. To tackle the first challenge, we introduce Hybrid Consistency Training to jointly leverage interpolation consistency, including interpolating hidden features, that imposes linear behavior locally and data augmentation consistency that learns robust embeddings against sample variations. As for the second challenge, we use unlabeled examples to iteratively normalize features and adapt prototypes, as opposed to commonly used one-time update, for more reliable prototype-based transductive inference. We show that our method generates a 2% to 5% improvement over the state-of-the-art methods with similar backbones on five FSL datasets and, more notably, a 7% to 8% improvement for more challenging cross-domain FSL.
We consider the few-shot classification task with an unbalanced dataset, in which some classes have sufficient training samples while other classes only have limited training samples. Recent works have proposed to solve this task by augmenting the training data of the few-shot classes using generative models with the few-shot training samples as the seeds. However, due to the limited number of the few-shot seeds, the generated samples usually have small diversity, making it difficult to train a discriminative classifier for the few-shot classes. To enrich the diversity of the generated samples, we propose to leverage the intra-class knowledge from the neighbor many-shot classes with the intuition that neighbor classes share similar statistical information. Such intra-class information is obtained with a two-step mechanism. First, a regressor trained only on the many-shot classes is used to evaluate the few-shot class means from only a few samples. Second, superclasses are clustered, and the statistical mean and feature variance of each superclass are used as transferable knowledge inherited by the children few-shot classes. Such knowledge is then used by a generator to augment the sparse training data to help the downstream classification tasks. Extensive experiments show that our method achieves state-of-the-art across different datasets and $n$-shot settings.