Do you want to publish a course? Click here

Path planning model of mobile robots in the context of crowds

63   0   0.0 ( 0 )
 Added by Ruiqi Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Robot path planning model based on RNN and visual quality evaluation in the context of crowds is analyzed in this paper. Mobile robot path planning is the key to robot navigation and an important field in robot research. Let the motion space of the robot be a two-dimensional plane, and the motion of the robot is regarded as a kind of motion under the virtual artificial potential field force when the artificial potential field method is used for the path planning. Compared to simple image acquisition, image acquisition in a complex crowd environment requires image pre-processing first. We mainly use OpenCV calibration tools to pre-process the acquired images. In themethodology design, the RNN-based visual quality evaluation to filter background noise is conducted. After calibration, Gaussian noise and some other redundant information affecting the subsequent operations still exist in the image. Based on RNN, a new image quality evaluation algorithm is developed, and denoising is performed on this basis. Furthermore, the novel path planning model is designed and simulated. The expeirment compared with the state-of-the-art models have shown the robustness of the model.

rate research

Read More

Planning smooth and energy-efficient motions for wheeled mobile robots is a central task for applications ranging from autonomous driving to service and intralogistic robotics. Over the past decades, a wide variety of motion planners, steer functions and path-improvement techniques have been proposed for such non-holonomic systems. With the objective of comparing this large assortment of state-of-the-art motion-planning techniques, we introduce a novel open-source motion-planning benchmark for wheeled mobile robots, whose scenarios resemble real-world applications (such as navigating warehouses, moving in cluttered cities or parking), and propose metrics for planning efficiency and path quality. Our benchmark is easy to use and extend, and thus allows practitioners and researchers to evaluate new motion-planning algorithms, scenarios and metrics easily. We use our benchmark to highlight the strengths and weaknesses of several common state-of-the-art motion planners and provide recommendations on when they should be used.
Path planning and collision avoidance are challenging in complex and highly variable environments due to the limited horizon of events. In literature, there are multiple model- and learning-based approaches that require significant computational resources to be effectively deployed and they may have limited generality. We propose a planning algorithm based on a globally stable passive controller that can plan smooth trajectories using limited computational resources in challenging environmental conditions. The architecture combines the recently proposed fractal impedance controller with elastic bands and regions of finite time invariance. As the method is based on an impedance controller, it can also be used directly as a force/torque controller. We validated our method in simulation to analyse the ability of interactive navigation in challenging concave domains via the issuing of via-points, and its robustness to low bandwidth feedback. A swarm simulation using 11 agents validated the scalability of the proposed method. We have performed hardware experiments on a holonomic wheeled platform validating smoothness and robustness of interaction with dynamic agents (i.e., humans and robots). The computational complexity of the proposed local planner enables deployment with low-power micro-controllers lowering the energy consumption compared to other methods that rely upon numeric optimisation.
75 - Ke Sun , Vijay Kumar 2021
In this work, we use iterative Linear Quadratic Gaussian (iLQG) to plan motions for a mobile robot with range sensors in belief space. We address two limitations that prevent applications of iLQG to the considered robotic system. First, iLQG assumes a differentiable measurement model, which is not true for range sensors. We show that iLQG only requires the differentiability of the belief dynamics. We propose to use a derivative-free filter to approximate the belief dynamics, which does not require explicit differentiability of the measurement model. Second, informative measurements from a range sensor are sparse. Uninformative measurements produce trivial gradient information, which prevent iLQG optimization from converging to a local minimum. We densify the informative measurements by introducing additional parameters in the measurement model. The parameters are iteratively updated in the optimization to ensure convergence to the true measurement model of a range sensor. We show the effectiveness of the proposed modifications through an ablation study. We also apply the proposed method in simulations of large scale real world environments, which show superior performance comparing to the state-of-the-art methods that either assume the separation principle or maximum likelihood measurements.
We present a novel learning-based collision avoidance algorithm, CrowdSteer, for mobile robots operating in dense and crowded environments. Our approach is end-to-end and uses multiple perception sensors such as a 2-D lidar along with a depth camera to sense surrounding dynamic agents and compute collision-free velocities. Our training approach is based on the sim-to-real paradigm and uses high fidelity 3-D simulations of pedestrians and the environment to train a policy using Proximal Policy Optimization (PPO). We show that our learned navigation model is directly transferable to previously unseen virtual and dense real-world environments. We have integrated our algorithm with differential drive robots and evaluated its performance in narrow scenarios such as dense crowds, narrow corridors, T-junctions, L-junctions, etc. In practice, our approach can perform real-time collision avoidance and generate smooth trajectories in such complex scenarios. We also compare the performance with prior methods based on metrics such as trajectory length, mean time to goal, success rate, and smoothness and observe considerable improvement.
We aim to enable a mobile robot to navigate through environments with dense crowds, e.g., shopping malls, canteens, train stations, or airport terminals. In these challenging environments, existing approaches suffer from two common problems: the robot may get frozen and cannot make any progress toward its goal, or it may get lost due to severe occlusions inside a crowd. Here we propose a navigation framework that handles the robot freezing and the navigation lost problems simultaneously. First, we enhance the robots mobility and unfreeze the robot in the crowd using a reinforcement learning based local navigation policy developed in our previous work~cite{long2017towards}, which naturally takes into account the coordination between the robot and the human. Secondly, the robot takes advantage of its excellent local mobility to recover from its localization failure. In particular, it dynamically chooses to approach a set of recovery positions with rich features. To the best of our knowledge, our method is the first approach that simultaneously solves the freezing problem and the navigation lost problem in dense crowds. We evaluate our method in both simulated and real-world environments and demonstrate that it outperforms the state-of-the-art approaches. Videos are available at https://sites.google.com/view/rlslam.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا