No Arabic abstract
We aim to enable a mobile robot to navigate through environments with dense crowds, e.g., shopping malls, canteens, train stations, or airport terminals. In these challenging environments, existing approaches suffer from two common problems: the robot may get frozen and cannot make any progress toward its goal, or it may get lost due to severe occlusions inside a crowd. Here we propose a navigation framework that handles the robot freezing and the navigation lost problems simultaneously. First, we enhance the robots mobility and unfreeze the robot in the crowd using a reinforcement learning based local navigation policy developed in our previous work~cite{long2017towards}, which naturally takes into account the coordination between the robot and the human. Secondly, the robot takes advantage of its excellent local mobility to recover from its localization failure. In particular, it dynamically chooses to approach a set of recovery positions with rich features. To the best of our knowledge, our method is the first approach that simultaneously solves the freezing problem and the navigation lost problem in dense crowds. We evaluate our method in both simulated and real-world environments and demonstrate that it outperforms the state-of-the-art approaches. Videos are available at https://sites.google.com/view/rlslam.
We present Frozone, a novel algorithm to deal with the Freezing Robot Problem (FRP) that arises when a robot navigates through dense scenarios and crowds. Our method senses and explicitly predicts the trajectories of pedestrians and constructs a Potential Freezing Zone (PFZ); a spatial zone where the robot could freeze or be obtrusive to humans. Our formulation computes a deviation velocity to avoid the PFZ, which also accounts for social constraints. Furthermore, Frozone is designed for robots equipped with sensors with a limited sensing range and field of view. We ensure that the robots deviation is bounded, thus avoiding sudden angular motion which could lead to the loss of perception data of the surrounding obstacles. We have combined Frozone with a Deep Reinforcement Learning-based (DRL) collision avoidance method and use our hybrid approach to handle crowds of varying densities. Our overall approach results in smooth and collision-free navigation in dense environments. We have evaluated our methods performance in simulation and on real differential drive robots in challenging indoor scenarios. We highlight the benefits of our approach over prior methods in terms of success rates (up to 50% increase), pedestrian-friendliness (100% increase) and the rate of freezing (> 80% decrease) in challenging scenarios.
We present a novel learning-based collision avoidance algorithm, CrowdSteer, for mobile robots operating in dense and crowded environments. Our approach is end-to-end and uses multiple perception sensors such as a 2-D lidar along with a depth camera to sense surrounding dynamic agents and compute collision-free velocities. Our training approach is based on the sim-to-real paradigm and uses high fidelity 3-D simulations of pedestrians and the environment to train a policy using Proximal Policy Optimization (PPO). We show that our learned navigation model is directly transferable to previously unseen virtual and dense real-world environments. We have integrated our algorithm with differential drive robots and evaluated its performance in narrow scenarios such as dense crowds, narrow corridors, T-junctions, L-junctions, etc. In practice, our approach can perform real-time collision avoidance and generate smooth trajectories in such complex scenarios. We also compare the performance with prior methods based on metrics such as trajectory length, mean time to goal, success rate, and smoothness and observe considerable improvement.
Robot path planning model based on RNN and visual quality evaluation in the context of crowds is analyzed in this paper. Mobile robot path planning is the key to robot navigation and an important field in robot research. Let the motion space of the robot be a two-dimensional plane, and the motion of the robot is regarded as a kind of motion under the virtual artificial potential field force when the artificial potential field method is used for the path planning. Compared to simple image acquisition, image acquisition in a complex crowd environment requires image pre-processing first. We mainly use OpenCV calibration tools to pre-process the acquired images. In themethodology design, the RNN-based visual quality evaluation to filter background noise is conducted. After calibration, Gaussian noise and some other redundant information affecting the subsequent operations still exist in the image. Based on RNN, a new image quality evaluation algorithm is developed, and denoising is performed on this basis. Furthermore, the novel path planning model is designed and simulated. The expeirment compared with the state-of-the-art models have shown the robustness of the model.
The increasing number of mass events involving large crowds calls for a better understanding of the dynamics of dense crowds. Inquiring into the possibility of a mechanical description of these dynamics, we experimentally study the crossing of dense static crowds by a cylindrical intruder, a mechanical test which is classical for granular matter. The analysis of our experiments reveals robust features in the crowds response, comprising both similarities and discrepancies with the response of granular media. Common features include the presence of a depleted region behind the intruder and the short-range character of the perturbation. On the other hand, unlike grains, pedestrians anticipate the intruders passage by moving much before contact and their displacements are mostly lateral, hence not aligned with the forces exerted by the intruder. Similar conclusions are reached when the intruder is not a cylinder, but a single crossing pedestrian. Thus, our work shows that pedestrian interactions even at high densities (3 to 6 ped/m 2) do not reduce to mechanical ones. More generally, the avoidance strategies evidenced by our findings question the incautious use of force models for dense crowds.
We present DenseCAvoid, a novel navigation algorithm for navigating a robot through dense crowds and avoiding collisions by anticipating pedestrian behaviors. Our formulation uses visual sensors and a pedestrian trajectory prediction algorithm to track pedestrians in a set of input frames and provide bounding boxes that extrapolate the pedestrian positions in a future time. Our hybrid approach combines this trajectory prediction with a Deep Reinforcement Learning-based collision avoidance method to train a policy to generate smoother, safer, and more robust trajectories during run-time. We train our policy in realistic 3-D simulations of static and dynamic scenarios with multiple pedestrians. In practice, our hybrid approach generalizes well to unseen, real-world scenarios and can navigate a robot through dense crowds (~1-2 humans per square meter) in indoor scenarios, including narrow corridors and lobbies. As compared to cases where prediction was not used, we observe that our method reduces the occurrence of the robot freezing in a crowd by up to 48%, and performs comparably with respect to trajectory lengths and mean arrival times to goal.