No Arabic abstract
The development of high-density magnetic recording media is limited by the superparamagnetism in very small ferromagnetic crystals. Hard magnetic materials with strong perpendicular anisotropy offer stability and high recording density. To overcome the difficulty of writing media with a large coercivity, heat assisted magnetic recording (HAMR) has been developed, rapidly heating the media to the Curie temperature Tc before writing, followed by rapid cooling. Requirements are a suitable Tc, coupled with anisotropic thermal conductivity and hard magnetic properties. Here we introduce Rh2CoSb as a new hard magnet with potential for thin film magnetic recording. A magnetocrystalline anisotropy of 3.6 MJm-3 is combined with a saturation magnetization of {mu}0Ms = 0.52 T at 2 K (2.2 MJm-3 and 0.44 T at room-temperature). The magnetic hardness parameter of 3.7 at room temperature is the highest observed for any rare-earth free hard magnet. The anisotropy is related to an unquenched orbital moment of 0.42 {mu}B on Co, which is hybridized with neighbouring Rh atoms with a large spin-orbit interaction. Moreover, the pronounced temperature-dependence of the anisotropy that follows from its Tc of 450 K, together with a high thermal conductivity of 20 Wm-1K-1, makes Rh2CoSb a candidate for development for heat assisted writing with a recording density in excess of 10 Tb/in2.
We correlate simultaneously recorded magnetotransport and spatially resolved magneto optical Kerr effect (MOKE) data in Co2FeAl Heusler compound thin films micropatterned into Hall bars. Room temperature MOKE images reveal the nucleation and propagation of domains in an externally applied magnetic field and are used to extract a macrospin corresponding to the mean magnetization direction in the Hall bar. The anisotropic magnetoresistance calculated using this macrospin is in excellent agreement with magnetoresistance measurements. This suggests that the magnetotransport in Heusler compounds can be adequately simulated using simple macrospin models, while the magnetoresistance contribution due to domain walls is of negligible importance.
We have studied nucleation of magnetic domains and propagation of magnetic domain walls (DWs) induced by pulsed magnetic field in a ferromagnetic film with in-plane uniaxial anisotropy. Different from what have been seen up to now in out-of-plane anisotropy films, the nucleated domains have a rectangular shape in which a pair of the opposite sides are perfectly linear DWs, while the other pair present zigzags. This can be explained by magnetostatic optimization, knowing that the pulse field is applied parallel to the easy magnetization axis. The field induced propagation of these two DW types are very different. The linear ones follow a creep law identical to what is usually observed in out-of-plane films, when the velocity of zigzag DWs depends linearly on the applied field amplitude down to very low field. This most unusual feature can be explained by the shape of the DW, which makes it possible to go round the pinning defects. Thanks to that, it seems that propagation of zigzag walls agrees with the 1D model, and these results provide a first experimental evidence of the 1D model relevance in two dimensional ferromagnetic thin films. Lets note that it is the effective DW width parallel to DW propagation direction that matters in the 1D model formula, which is a relevant change when dealing with zigzag DWs.
Off-axis electron holography was used to observe and quantify the magnetic microstructure of a perpendicular magnetic anisotropic (PMA) recording media. Thin foils of PMA materials exhibit an interesting up and down domain configuration. These domains are found to be very stable and were observed at the same time with their stray field, closing magnetic flux in the vacuum. The magnetic moment can thus be determined locally in a volume as small as few tens of cubic nanometers.
Skyrmions in non-centrosymmetric magnets are vortex-like spin arrangements, viewed as potential candidates for information storage devices. The crystal structure and non-collinear magnetic structure together with magnetic and spin-orbit interactions define the symmetry of the Skyrmion structure. We outline the importance of these parameters in the Heusler compound Mn1.4PtSn which hosts antiskyrmions, a vortex-like spin texture related to skyrmions.1 We overcome the challenge of growing large micro-twin-free single crystals of Mn1.4PtSn which has proved to be the bottleneck for realizing bulk skyrmionic/antiskyrmionic states in a compound. The use of 5d-transition metal, platinum, together with manganese as constituents in the Heusler compound such as Mn1.4PtSn is a precondition for the non-collinear magnetic structure. Due to the tetragonal inverse Heusler structure, Mn1.4PtSn exhibits large magneto-crystalline anisotropy and D2d symmetry, which are necessary for antiskyrmions. The superstructure in Mn1.4PtSn is induced by Mn-vacancies which enables a ferromagnetic exchange interaction to occur. Mn1.4PtSn, the first known tetragonal Heusler superstructure compound, opens up a new research direction for properties related to the superstructure in a family containing thousands of compounds.
Synthesizing half-metallic fully-compensated ferrimagnets that form in the inverse Heusler phase could lead to superior spintronic devices. These materials would have high spin polarization at room temperature with very little fringing magnetic fields. Previous theoretical studies indicated that Cr2CoAl should form in a stable inverse Heusler lattice due to its low activation energy. Here, stoichiometric Cr2CoAl samples were arc-melted and annealed at varying temperatures, followed by studies of their structural and magnetic properties. High-resolution synchrotron X-ray diffraction revealed a chemically ordered Heusler phase in addition to CoAl and Cr phases. Soft X-ray magnetic circular dichroism revealed that the Cr and Co magnetic moments are antiferromagnetically oriented leading to the observed low magnetic moment in Cr2CoAl.