Do you want to publish a course? Click here

Element-specific field-induced spin reorientation and an unusual tetracritical point in MnCr2S4

185   0   0.0 ( 0 )
 Added by Shingo Yamamoto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ferrimagnetic spinel MnCr2S4 shows a variety of magnetic-field-induced phase transitions owing to bond frustration and strong spin-lattice coupling. However, the site-resolved magnetic properties at the respective field-induced phases in high magnetic fields remain elusive. Our soft x-ray magnetic circular dichroism studies up to 40 T directly evidence element-selective magnetic-moment reorientations in the field-induced phases. The complex magnetic structures are further supported by entropy changes extracted from magnetocaloric-effect measurements. Moreover, thermodynamic experiments reveal an unusual tetracritical point in the H-T phase diagram of MnCr2S4 due to strong spin-lattice coupling.



rate research

Read More

Magnetization and neutron diffraction measurements indicate long-range antiferromagnetic ordering below TN=4 K in the 2D, S=1/2 Heisenberg antiferromagnet K2V3O8. The ordered state exhibits ``weak ferromagnetism and novel, field-induced spin reorientations. These experimental observations are well described by a classical, two-spin Heisenberg model incorporating Dzyaloshinskii-Moriya interactions and an additional c-axis anisotropy. This additional anisotropy can be accounted for by inclusion of the symmetric anisotropy term recently described by Kaplan, Shekhtman, Entin-Wohlman, and Aharony. This suggests that K2V3O8 may be a very unique system where the qualitative behavior relies on the presence of this symmetric anisotropy.
Spin supersolids and spin superfluids reveal complex canted spin structures with independent order of longitudinal and transverse spin components. This work addresses the question whether these exotic phases can exhibit spin-driven ferroelectricity. Here we report the results of dielectric and pyrocurrent measurements of MnCr2S4 as function of temperature and magnetic field up to 60 T. This sulfide chromium spinel exhibits a Yafet-Kittel type canted spin structure at low temperatures. As function of external magnetic field, the manganese spins undergo a sequence of ordering patterns of the transverse and longitudinal spin components, which can be mapped onto phases as predicted by lattice-gas models including solid, liquid, super-fluid, and supersolid phases. By detailed dielectric and pyrocurrent measurements, we document a zoo of multiferroic phases with sizable ferroelectric polarization strongly varying from phase to phase. Using lattice-gas terminology, the title compound reveals multiferroic spin-superfluid and spin-supersolid phases, while the antiferromagnetic solid is paraelectric.
We report on the magnetocrystalline anisotropy energy (MAE) and spin reorientation in antiferromagnetic state of spin $S=1/2$ tetramer system SeCuO$_3$ observed in torque magnetometry measurements in magnetic fields $H<5$~T and simulated using density functional calculations. We employ simple phenomenological model of spin reorientation in finite magnetic field to describe our experimental torque data. Our results strongly support collinear model for magnetic structure in zero field with possibility of only very weak canting. Torque measurements also indicate that, contrary to what is expected for uniaxial antiferromagnet, in SeCuO$_3$ only part of the spins exhibit spin flop instead all of them, allowing us to conclude that AFM state of SeCuO$_3$ is unconventional and comprised of two decoupled subsystems. Taking into account previously proposed site-selective correlations and dimer singlet state formation in this system, our results offer further proof that AFM state in SeCuO$_3$ is composed of a subsystem of AFM dimers forming singlets immersed in antiferromagnetically long-range ordered spins, where both states coexist on atomic scale. Furthermore, we show, using an ab-initio approach, that both subsystems contribute differently to the MAE, corroborating the existence of decoupled subnetworks in SeCuO$_3$. Combination of torque magnetometry, phenomenological approach and DFT simulations to magnetic anisotropy presented here represents a unique and original way to study site-specific reorientation phenomena in quantum magnets.
267 - Y. Xiao , Y. Su , W. Schmidt 2010
We have studied a EuFe2As2 single crystal by neutron diffraction under magnetic fields up to 3.5 T and temperatures down to 2 K. A field induced spin reorientation is observed in the presence of a magnetic field along both the a and c axes, respectively. Above critical field, the ground state antiferromagnetic configuration of Eu$^{2+}$ moments transforms into a ferromagnetic structure with moments along the applied field direction. The magnetic phase diagram for Eu magnetic sublattice in EuFe2As2 is presented. A considerable strain ($sim$0.9%) is induced by the magnetic field, caused by the realignment of the twinning structure. Furthermore, the realignment of the twinning structure is found to be reversible with the rebound of magnetic field, which suggested the existence of magnetic shape-memory effect. The Eu moment ordering exhibits close relationship with the twinning structure. We argue that the Zeeman energy in combined with magnetic anisotropy energy is responsible for the observed spin-lattice coupling.
$beta$-TeVO$_4$ is a frustrated spin 1/2 zig-zag chain system,where spin-density-wave (SDW), vector chiral (VC)and an exotic dynamic spin-stripe phase compete at low temperatures. Here we use torque magnetometry to study the anisotropy of these phases in magnetic fields of up to 5 T. Our results show that the magnetic-field-induced spin reorientation occurs in the SDW and in the spin stripe phases for $mu_0 H geq 2$~T. The observed spin reorientation is a new element of the anisotropic phase diagram for the field directions in the $ac$ and $a^*b$ crystallographic planes. The presented results should help establishing the model of anisotropic magnetic interactions, which are responsible for the formation of complex magnetic phases in $beta$-TeVO$_4$ and similar quantum systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا