Do you want to publish a course? Click here

Multiferroic spin-superfluid and spin-supersolid phases in MnCr2S4

55   0   0.0 ( 0 )
 Added by Alois Loidl
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin supersolids and spin superfluids reveal complex canted spin structures with independent order of longitudinal and transverse spin components. This work addresses the question whether these exotic phases can exhibit spin-driven ferroelectricity. Here we report the results of dielectric and pyrocurrent measurements of MnCr2S4 as function of temperature and magnetic field up to 60 T. This sulfide chromium spinel exhibits a Yafet-Kittel type canted spin structure at low temperatures. As function of external magnetic field, the manganese spins undergo a sequence of ordering patterns of the transverse and longitudinal spin components, which can be mapped onto phases as predicted by lattice-gas models including solid, liquid, super-fluid, and supersolid phases. By detailed dielectric and pyrocurrent measurements, we document a zoo of multiferroic phases with sizable ferroelectric polarization strongly varying from phase to phase. Using lattice-gas terminology, the title compound reveals multiferroic spin-superfluid and spin-supersolid phases, while the antiferromagnetic solid is paraelectric.



rate research

Read More

184 - Sh. Yamamoto , H. Suwa , T. Kihara 2020
The ferrimagnetic spinel MnCr2S4 shows a variety of magnetic-field-induced phase transitions owing to bond frustration and strong spin-lattice coupling. However, the site-resolved magnetic properties at the respective field-induced phases in high magnetic fields remain elusive. Our soft x-ray magnetic circular dichroism studies up to 40 T directly evidence element-selective magnetic-moment reorientations in the field-induced phases. The complex magnetic structures are further supported by entropy changes extracted from magnetocaloric-effect measurements. Moreover, thermodynamic experiments reveal an unusual tetracritical point in the H-T phase diagram of MnCr2S4 due to strong spin-lattice coupling.
In order to clarify the mechanism associated with pressure/magnetic-field-induced giant ferroelectric polarization in TbMnO3, this work investigated changes in magnetic ordering brought about by variations in temperature, magnetic field, and pressure. This was accomplished by means of neutron diffraction analyses under high pressures and high magnetic fields, employing a single crystal. The incommensurate magnetic ordering of a cycloid structure was found to be stable below the reported critical pressure of 4.5 GPa. In contrast, a commensurate E-type spin ordering of Mn spins and a noncollinear configuration of Tb spins with k=(0,1/2,0) appeared above 4.5 GPa. The application of a magnetic field along the a axis (H_{||a}) under pressure induces a k=(0,0,0)antiferromagnetic structure in the case of Tb spins above H_{||a}, enhancing the ferroelectric polarization, while the E-type ordering of Mn spins is stable even above the critical field. From the present experimental findings, we conclude that the E-type ordering of Mn spins induces giant ferroelectric polarization through an exchange striction mechanism. The H_{||a}-induced polarization enhancement can be understood by considering that the polarization, reduced by the polar ordering of Tb moments in a zero field, can be recovered through a field-induced change to nonpolar k=(0,0,0) ordering at H_{||a} ~ 2T.
Lattice and spin excitations have been studied by Raman scattering in hexagonal YbMnO3 single crystals. The temperature dependences of the phonon modes show that the E2 mode at 256 cm-1 related to the displacement of Mn and O ions in a-b plane is coupled to the spin order. The A1 phonon mode at 678 cm-1 presents a soft mode behavior at the Neel temperature. Connected to the motion of the apical oxygen ions along the c direction, this mode controls directly the Mn-Mn interactions between adjacent Mn planes and the superexchange path. Crystal field and magnon mode excitations have been identified. The temperature investigation of the spin excitations shows that the spin structure is strongly influence by the Yb-Mn interaction. Under a magnetic field along the c axis, we have investigated the magnetic reordering and its impact on the spin excitations.
166 - C. Toulouse , L. Chaix , J. Liu 2014
We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling.
Anisotropic multiferroic properties of SrMnGe2O6 pyroxene single crystals were systematically investigated by means of magnetization, heat capacity, pyroelectric current measurement and elastic and inelastic neutron scattering experiments. Single crystal neutron diffraction allows us to unambiguously reveal the presence of two incommensurate magnetic orderings: a non-polar amplitude-modulated collinear sinusoidal magnetic structure emerges at TN1=4.36(2)K followed by a polar elliptical cycloidal spin structure below TN2=4.05(2)K. Pyroelectric current measurements on single crystal confirm the appearance of a spontaneous polarization within the (ac) plane below TN2 associated with the latter magnetic symmetry through extended Dzyaloshinsky-Moriya mechanism. The magnetic phase diagram was calculated considering the three isotropic exchange couplings relevant in this system. The magnetic excitations spectra of SrMnGe2O6 measured by inelastic neutron scattering were successfully modeled using a set of exchange interactions consistent with this phase diagram.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا