Do you want to publish a course? Click here

Knowledge-Empowered Representation Learning for Chinese Medical Reading Comprehension: Task, Model and Resources

343   0   0.0 ( 0 )
 Added by Taolin Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Machine Reading Comprehension (MRC) aims to extract answers to questions given a passage. It has been widely studied recently, especially in open domains. However, few efforts have been made on closed-domain MRC, mainly due to the lack of large-scale training data. In this paper, we introduce a multi-target MRC task for the medical domain, whose goal is to predict answers to medical questions and the corresponding support sentences from medical information sources simultaneously, in order to ensure the high reliability of medical knowledge serving. A high-quality dataset is manually constructed for the purpose, named Multi-task Chinese Medical MRC dataset (CMedMRC), with detailed analysis conducted. We further propose the Chinese medical BERT model for the task (CMedBERT), which fuses medical knowledge into pre-trained language models by the dynamic fusion mechanism of heterogeneous features and the multi-task learning strategy. Experiments show that CMedBERT consistently outperforms strong baselines by fusing context-aware and knowledge-aware token representations.



rate research

Read More

130 - Siyu Long , Ran Wang , Kun Tao 2020
Machine reading comprehension (MRC) is the task that asks a machine to answer questions based on a given context. For Chinese MRC, due to the non-literal and non-compositional semantic characteristics, Chinese idioms pose unique challenges for machines to understand. Previous studies tend to treat idioms separately without fully exploiting the relationship among them. In this paper, we first define the concept of literal meaning coverage to measure the consistency between semantics and literal meanings for Chinese idioms. With the definition, we prove that the literal meanings of many idioms are far from their semantics, and we also verify that the synonymic relationship can mitigate this inconsistency, which would be beneficial for idiom comprehension. Furthermore, to fully utilize the synonymic relationship, we propose the synonym knowledge enhanced reader. Specifically, for each idiom, we first construct a synonym graph according to the annotations from a high-quality synonym dictionary or the cosine similarity between the pre-trained idiom embeddings and then incorporate the graph attention network and gate mechanism to encode the graph. Experimental results on ChID, a large-scale Chinese idiom reading comprehension dataset, show that our model achieves state-of-the-art performance.
Multi-turn dialogue reading comprehension aims to teach machines to read dialogue contexts and solve tasks such as response selection and answering questions. The major challenges involve noisy history contexts and especial prerequisites of commonsense knowledge that is unseen in the given material. Existing works mainly focus on context and response matching approaches. This work thus makes the first attempt to tackle the above two challenges by extracting substantially important turns as pivot utterances and utilizing external knowledge to enhance the representation of context. We propose a pivot-oriented deep selection model (PoDS) on top of the Transformer-based language models for dialogue comprehension. In detail, our model first picks out the pivot utterances from the conversation history according to the semantic matching with the candidate response or question, if any. Besides, knowledge items related to the dialogue context are extracted from a knowledge graph as external knowledge. Then, the pivot utterances and the external knowledge are combined with a well-designed mechanism for refining predictions. Experimental results on four dialogue comprehension benchmark tasks show that our proposed model achieves great improvements on baselines. A series of empirical comparisons are conducted to show how our selection strategies and the extra knowledge injection influence the results.
SemEval task 4 aims to find a proper option from multiple candidates to resolve the task of machine reading comprehension. Most existing approaches propose to concat question and option together to form a context-aware model. However, we argue that straightforward concatenation can only provide a coarse-grained context for the MRC task, ignoring the specific positions of the option relative to the question. In this paper, we propose a novel MRC model by filling options into the question to produce a fine-grained context (defined as summary) which can better reveal the relationship between option and question. We conduct a series of experiments on the given dataset, and the results show that our approach outperforms other counterparts to a large extent.
We propose a multi-task learning framework to learn a joint Machine Reading Comprehension (MRC) model that can be applied to a wide range of MRC tasks in different domains. Inspired by recent ideas of data selection in machine translation, we develop a novel sample re-weighting scheme to assign sample-specific weights to the loss. Empirical study shows that our approach can be applied to many existing MRC models. Combined with contextual representations from pre-trained language models (such as ELMo), we achieve new state-of-the-art results on a set of MRC benchmark datasets. We release our code at https://github.com/xycforgithub/MultiTask-MRC.
We study automatic question generation for sentences from text passages in reading comprehension. We introduce an attention-based sequence learning model for the task and investigate the effect of encoding sentence- vs. paragraph-level information. In contrast to all previous work, our model does not rely on hand-crafted rules or a sophisticated NLP pipeline; it is instead trainable end-to-end via sequence-to-sequence learning. Automatic evaluation results show that our system significantly outperforms the state-of-the-art rule-based system. In human evaluations, questions generated by our system are also rated as being more natural (i.e., grammaticality, fluency) and as more difficult to answer (in terms of syntactic and lexical divergence from the original text and reasoning needed to answer).

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا