Do you want to publish a course? Click here

An unexplored MBE growth mode reveals new properties of superconducting NbN

73   0   0.0 ( 0 )
 Added by John Wright
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Accessing unexplored conditions in crystal growth often reveals remarkable surprises and new regimes of physical behavior. In this work, performing molecular beam epitaxy of the technologically important superconductor NbN at temperatures greater than 1000$^circ$C, higher than in the past, is found to reveal persistent RHEED oscillations throughout the growth, atomically smooth surfaces, normal metal resistivities as low as 37$muOmega$-cm and superconducting critical temperatures in excess of 15 K. Most remarkably, a reversal of the sign of the Hall coefficient is observed as the NbN films are cooled, and the high material quality allows the first imaging of Abrikosov vortex lattices in this superconductor.



rate research

Read More

We have studied the magnetic properties of (GaMnAs)m/(GaAs)n superlattices with magnetic GaMnAs layers of thickness between 8 and 16 molecular layers (ML) (23-45 AA), and with nonmagnetic GaAs spacers from 4 ML to 10 ML (11-28 AA). While previous reports state that GaMnAs layers thinner than 50 AA are paramagnetic in the whole Mn composition range achievable using MBE growth (up to 8% Mn), we have found that short period superlattices exhibit a paramagnetic-to-ferromagnetic phase transition with a transition temperature which depends on both the thickness of the magnetic GaMnAs layer and the nonmagnetic GaAs spacer. The neutron scattering experiments have shown that the magnetic layers in superlattices are ferromagnetically coupled for both thin (below 50 AA) and thick (above 50 AA) GaMnAs layers.
We have studied the structural and superconducting properties of MgB$_2$ thin films made by pulsed laser deposition followed by in situ annealing. The cross-sectional transmission electron microscopy reveals a nanocrystalline mixture of textured MgO and MgB$_2$ with very small grain sizes. A zero-resistance transition temperature ($T_{c0}$) of 34 K and a zero-field critical current density ($J_c$) of $1.3 times 10^6$ A/cm$^2$ were obtained. The irreversibility field was $sim$ 8 T at low temperatures, although severe pinning instability was observed. These bulk-like superconducting properties show that the in situ deposition process can be a viable candidate for MgB$_2$ Josephson junction technologies.
220 - Kai Chang , Peng Deng , Teng Zhang 2015
The stoichiometric 111 iron-based superconductor, LiFeAs, has attacted great research interest in recent years. For the first time, we have successfully grown LiFeAs thin film by molecular beam epitaxy (MBE) on SrTiO3(001) substrate, and studied the interfacial growth behavior by reflection high energy electron diffraction (RHEED) and low-temperature scanning tunneling microscope (LT-STM). The effects of substrate temperature and Li/Fe flux ratio were investigated. Uniform LiFeAs film as thin as 3 quintuple-layer (QL) is formed. Superconducting gap appears in LiFeAs films thicker than 4 QL at 4.7 K. When the film is thicker than 13 QL, the superconducting gap determined by the distance between coherence peaks is about 7 meV, close to the value of bulk material. The ex situ transport measurement of thick LiFeAs film shows a sharp superconducting transition around 16 K. The upper critical field, Hc2(0)=13.0 T, is estimated from the temperature dependent magnetoresistance. The precise thickness and quality control of LiFeAs film paves the road of growing similar ultrathin iron arsenide films.
The electronic structure of heterointerfaces play a pivotal role in their device functionality. Recently, highly crystalline ultrathin films of superconducting NbN have been integrated by molecular beam epitaxy with the semiconducting GaN. We use soft X-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures for both NbN and GaN constituents of this Schottky heterointerface, and determine their momentum-dependent interfacial band offset as well as the band-bending profile into GaN. We find, in particular, that the Fermi states in NbN are aligned against the band gap in GaN, which excludes any significant electronic cross-talk of the superconducting states in NbN through the interface to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties elucidated by the combined materials advances and experimental methods in our work opens up new possibilities in systems where interfacial states play a defining role.
73 - Hanlin Wu , Sheng Li , Zheng Wu 2020
In this work, we have thoroughly studied the effects of flux composition and temperature on the crystal growth of the BaCu2As2 compound. While Pb and CuAs self-flux produce the well-known {alpha}-phase ThCr2Si2-type structure (Z=2), a new polymorphic phase of BaCu2As2 (b{eta} phase) with a much larger c lattice parameter (Z=10), which could be considered an intergrowth of the ThCr2Si2- and CaBe2Ge2-type structures, has been discovered via Sn flux growth. We have characterized this structure through single-crystal X-ray diffraction, transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM) studies. Furthermore, we compare this new polymorphic intergrowth structure with the {alpha}-phase BaCu2As2 (ThCr2Si2 type with Z=2) and the b{eta}-phase BaCu2Sb2 (intergrowth of ThCr2Si2 and CaBe2Ge2 types with Z=6), both with the same space group I4/mmm. Electrical transport studies reveal p-type carriers and magnetoresistivity up to 22% at 5 K and under a magnetic field of 7 T. Our work suggests a new route for the discovery of new polymorphic structures through flux and temperature control during material synthesis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا