Do you want to publish a course? Click here

Ferromagnetic GaMnAs/GaAs superlattices - MBE growth and magnetic properties

60   0   0.0 ( 0 )
 Added by Roland Mathieu
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the magnetic properties of (GaMnAs)m/(GaAs)n superlattices with magnetic GaMnAs layers of thickness between 8 and 16 molecular layers (ML) (23-45 AA), and with nonmagnetic GaAs spacers from 4 ML to 10 ML (11-28 AA). While previous reports state that GaMnAs layers thinner than 50 AA are paramagnetic in the whole Mn composition range achievable using MBE growth (up to 8% Mn), we have found that short period superlattices exhibit a paramagnetic-to-ferromagnetic phase transition with a transition temperature which depends on both the thickness of the magnetic GaMnAs layer and the nonmagnetic GaAs spacer. The neutron scattering experiments have shown that the magnetic layers in superlattices are ferromagnetically coupled for both thin (below 50 AA) and thick (above 50 AA) GaMnAs layers.



rate research

Read More

98 - A. Koeder , S. Frank , W. Schoch 2002
We report on detailed investigations of the electronic and magnetic properties of ferromagnetic GaMnAs layers, which have been fabricated by low-temperature molecular-beam epitaxy. Superconducting quantum interference device measurements reveal a decrease of the Curie temperature from the surface to the GaMnAs/GaAs interface. While high resolution x-ray diffraction clearly shows a homogeneous Mn distribution, a pronounced decrease of the carrier concentration from the surface towards the GaMnAs/GaAs interface has been found by Raman spectroscopy as well as electrochemical capacitance-voltage profiling. The gradient in Curie temperature seems to be a general feature of GaMnAs layers grown at low-temperature. Possible explanations are discussed.
We carefully investigated the ferromagnetic coupling in the as-grown and annealed ferromagnetic semiconductor GaMnAs/AlGaMnAs bilayer devices. We observed that the magnetic interaction between the two layers strongly affects the magnetoresistance of the GaMnAs layer with applying out of plane magnetic field. After low temperature annealing, the magnetic easy axis of the AlGaMnAs layer switches from out of plane into in-plane and the interlayer coupling efficiency is reduced from up to 0.6 to less than 0.4. However, the magnetic coupling penetration depth for the annealed device is twice that of the as-grown bilayer device.
214 - J. Qi , J. A. Yan , H. Park 2012
Ultrafast two-color pump-probe measurements, involving coherent acoustic phonon (CAP) waves, have provided information simultaneously on the mechanical properties and on the electronic structure of ferromagnetic GaMnAs. The elastic constant C11 of Ga1-xMnxAs (0.03<x<0.07) are observed to be systematically smaller than those of GaAs. Both C11 and Vs of GaMnAs are found to increase with temperature (78 K<T<295 K), again in contrast to the opposite behavior in GaAs. In addition, the fundamental bandgap (at E0 critical point) of Ga1-xMnxAs is found to shift slightly to higher energies with Mn concentration.
Accessing unexplored conditions in crystal growth often reveals remarkable surprises and new regimes of physical behavior. In this work, performing molecular beam epitaxy of the technologically important superconductor NbN at temperatures greater than 1000$^circ$C, higher than in the past, is found to reveal persistent RHEED oscillations throughout the growth, atomically smooth surfaces, normal metal resistivities as low as 37$muOmega$-cm and superconducting critical temperatures in excess of 15 K. Most remarkably, a reversal of the sign of the Hall coefficient is observed as the NbN films are cooled, and the high material quality allows the first imaging of Abrikosov vortex lattices in this superconductor.
Using the angular dependence of the planar Hall effect in GaMnAs ferromagnetic films, we were able to determine the distribution of magnetic domain pinning fields in this material. Interestingly, there is a major difference between the pinning field distribution in as-grown and in annealed films, the former showing a strikingly narrower distribution than the latter. This conspicuous difference can be attributed to the degree of non-uniformity of magnetic anisotropy in both types of films. This finding provides a better understanding of the magnetic domain landscape in GaMnAs that has been the subject of intense debate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا