Do you want to publish a course? Click here

Superconducting properties of nanocrystalline MgB$_2$ thin films made by an in situ annealing process

339   0   0.0 ( 0 )
 Added by Xiaoxing Xi
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the structural and superconducting properties of MgB$_2$ thin films made by pulsed laser deposition followed by in situ annealing. The cross-sectional transmission electron microscopy reveals a nanocrystalline mixture of textured MgO and MgB$_2$ with very small grain sizes. A zero-resistance transition temperature ($T_{c0}$) of 34 K and a zero-field critical current density ($J_c$) of $1.3 times 10^6$ A/cm$^2$ were obtained. The irreversibility field was $sim$ 8 T at low temperatures, although severe pinning instability was observed. These bulk-like superconducting properties show that the in situ deposition process can be a viable candidate for MgB$_2$ Josephson junction technologies.



rate research

Read More

A thin film technology compatible with multilayer device fabrication is critical for exploring the potential of the 39-K superconductor magnesium diboride for superconducting electronics. Using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process, it is shown that the high Mg vapor pressure necessary to keep the MgB$_2$ phase thermodynamically stable can be achieved for the {it in situ} growth of MgB$_2$ thin films. The films grow epitaxially on (0001) sapphire and (0001) 4H-SiC substrates and show a bulk-like $T_c$ of 39 K, a $J_c$(4.2K) of $1.2 times 10^7$ A/cm$^2$ in zero field, and a $H_{c2}(0)$ of 29.2 T in parallel magnetic field. The surface is smooth with a root-mean-square roughness of 2.5 nm for MgB$_2$ films on SiC. This deposition method opens tremendous opportunities for superconducting electronics using MgB$_2$.
84 - D. Novko , F. Caruso , C. Draxl 2019
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
We investigate the influence of carbon-ion irradiation on the superconducting critical properties of MgB$_2$ thin films. MgB$_2$ films of two thicknesses viz. 400 nm (MB400nm) and 800 nm (MB800nm) were irradiated by 350 keV C ions having a wide range of fluence, 1 x 10$^{13}$ - 1 x 10$^{15}$ C atoms/cm$^2$. The mean projected range ($R_p$) of 350 keV C ions in MgB$_2$ is 560 nm, thus the energetic C ions will pass through the MB400nm, whereas the ions will remain into the MB800nm. The superconducting transition temperature ($T_c$), upper critical field ($H_{c2}$), $c$-axis lattice parameter, and corrected residual resistivity ($rho_{corr}$) of both the films showed similar trends with the variation of fluence. However, a disparate behavior in the superconducting phase transition was observed in the MB800nm when the fluence was larger than 1 x 10$^{14}$ C atoms/cm$^2$ because of the different Tcs between the irradiated and non-irradiated parts of the film. Interestingly, the superconducting critical properties, such as $T_c$, $H_{c2}$, and $J_c$, of the irradiated MgB$_2$ films, as well as the lattice parameter, were almost restored to those in the pristine state after a thermal annealing procedure. These results demonstrate that the atomic lattice distortion induced by C-ion irradiation is the main reason for the change in the superconducting properties of MgB$_2$ films.
127 - L. Riney , C. Bunker , S.-K. Bac 2020
SrxBi2Se3 is a candidate topological superconductor but its superconductivity requires the intercalation of Sr by into the van-der-Waals gaps of Bi2Se3. We report the synthesis of SrxBi2Se3 thin films by molecular beam epitaxy, and we characterize their structural, vibrational and electrical properties. X-ray diffraction and Raman spectroscopy show evidence of substitutional Sr alloying into the structure, while transport measurements allow us to correlate the increasing Sr content with an increased n-type doping, but do not reveal superconductivity down to 1.5K. Our results suggest that Sr predominantly occupies sites within a quintuple layer, simultaneously substituting for Bi and as an interstitial. Our results motivate future density functional studies to further investigate the energetics of Sr substitution into Bi2Se3.
We present a method for fabricating Josephson junctions and superconducting quantum interference devices (SQUIDs) which is based on the local anodization of niobium strip lines 3 to 6.5 nm-thick under the voltage-biased tip of an Atomic Force Microscope. Microbridge junctions and SQUID loops are obtained either by partial or total oxidation of the niobium layer. Two types of weak link geometries are fabricated : lateral constriction (Dayem bridges) and variable thickness bridges. SQUIDs based on both geometries show a modulation of the maximum Josephson current with a magnetic flux periodic with respect to the superconducting flux quantum h/2e. They persist up to 4K. The modulation shape and depth for SQUIDs based on variable thickness bridges indicate that the weak link size becomes comparable to the superconducting film coherence length which is of the order of 10nm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا