Do you want to publish a course? Click here

Detection of a Satellite of the Trojan Asteroid (3548) Eurybates -- A Lucy Mission Target

314   0   0.0 ( 0 )
 Added by Keith Noll
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the discovery of a satellite of the Trojan asteroid (3548) Eurybates in images obtained with the Hubble Space Telescope. The satellite was detected on three separate epochs, two in September 2018 and one in January 2020. The satellite has a brightness in all three epochs consistent with an effective diameter of d2 =1.2+/-0.4 km. The projected separation from Eurybates was s~1700-2300 km and varied in position, consistent with a large range of possible orbits. Eurybates is a target of the Lucy Discovery mission and the early detection of a satellite provides an opportunity for a significant expansion of the scientific return from this encounter.



rate research

Read More

Jupiter Trojan asteroids are minor bodies that share Jupiters orbit around the Sun. Although not yet well understood in origin and composition, they have surface properties that, besides being comparable with other populations of small bodies in the Solar System, hold information that may restrict models of planetary formation. Due their importance, there has been a significant increase in an interest in studying this population. In this context arises the NASA Lucy Mission, with a planned launch of 2021. The Lucy Mission will be the first one to address a group of 6 objects with the aim of investigating, in detail, their nature. In order to provide valuable information for mission planning and maximize the scientific return, we carried out ground based observations of four targets of the mission. Aimed at looking for variabilities on the spectra of (3548) Eurybates, (15094) Polymele and (21900) Orus, we performed rotationally resolved visible spectroscopy of them at SOAR Telescope. We also analyzed the first visible spectrum obtained for the main belt asteroid (52246) Donaldjohanson at Gran Telescopio Canarias. The spectra of Orus and Polymele present rather homogeneous characteristics along the surfaces, and their taxa correspond with those of the two dominant populations in the Trojan population, the P- and the D-type group of objects. Spectroscopy of Eurybates, on the other side, suggests that some variation on the characteristics of the reflectance of this body could be related with its collisional history. Donaldjohanson, the only main belt object in the group of targets, shows, according to our visible spectrum, hints of the presence of hydrated materials. Lucy mission will investigate the surface composition of these targets and will shed light on their connections with other minor bodies populations and in their role on the evolution of the Solar System.
We report observations of the Jupiter Trojan asteroid (3548) Eurybates and its satellite Queta with the Hubble Space Telescope and use these observations to perform an orbital fit to the system. Queta orbits Eurybates with a semimajor axis of $2350pm11$ km at a period of $82.46pm0.06$ days and an eccentricity of $0.125pm0.009$. From this orbit we derive a mass of Eurybates of $1.51pm0.03 times 10^{17}$ kg, corresponding to an estimated density of $1.1pm0.3$ g cm$^{-3}$, broadly consistent with densities measured for other Trojans, C-type asteroids in the outer main asteroid belt, and small icy objects from the Kuiper belt. Eurybates is the parent body of the only major collisional family among the Jupiter Trojans; its low density suggests that it is a typical member of the Trojan population. Detailed study of this system in 2027 with the Lucy spacecraft flyby should allow significant insight into collisional processes among what appear to be the icy bodies of the Trojan belt.
We report near-infrared (0.7-2.5 micron) reflectance spectra for each of the six target asteroids of the forthcoming NASA Discovery-class mission Lucy. Five Jupiter Trojans (the binary (617) Patroclus system, (3548) Eurybates, (21900) Orus, (11351) Leucus, and (15094) Polymele) are well-characterized, with measurable spectral differences. We also report a survey-quality spectrum for main belt asteroid (52246) Donaldjohanson. We measured a continuum of spectral slopes including red (Orus, Leucus), less red (Eurybates, Patroclus-Menoetius) and intermediate (Polymele), indicating a range of compositional end-members or geological histories. We perform radiative transfer modeling of several possible surface compositions. We find that the mild-sloped spectra and low albedo of Patroclus and Eurybates imply similar compositions. Eurybates (~7 wt.% water ice) and Patroclus (~4 wt.% water ice) are consistent with a hydrated surface. Models for Orus and Leucus are consistent with each other and require a significantly more reddening agent (e.g. iron-rich silicates or tholin-like organics). Polymele has a linear spectrum like Patroclus, but a higher albedo more closely aligned with Orus/Leucus, defying simple grouping. Solar system formation models generally predict that the Jovian Trojans accreted in the outer solar system. Our observations and analysis are generally consistent with this expectation, although not uniquely so.
The Lucy Mission accomplishes its science during a series of five flyby encounters with seven Trojan asteroid targets. This mission architecture drives a concept of operations design that maximizes science return, provides redundancy in observations where possible, features autonomous fault protection and utilizes onboard target tracking near closest approach. These design considerations reduce risk during the relatively short time-critical periods when science data is collected. The payload suite consists of a color camera and infrared imaging spectrometer, a high-resolution panchromatic imager, and a thermal infrared spectrometer. The mission design allows for concurrent observations of all instruments. Additionally, two spacecraft subsystems will also contribute to the science investigations: the Terminal Tracking Cameras will obtain wide field-of-view imaging near closest approach to determine the shape of each of the Trojan targets and the telecommunication subsystem will carry out Doppler tracking of the spacecraft to determine the mass of each of the Trojan targets.
Near-Earth binary asteroid (175706) 1996 FG3 is the current backup target of the ESA MarcoPolo-R mission, selected for the study phase of ESA M3 missions. It is a primitive (C-type) asteroid that shows significant variation in its visible and near-infrared spectra. Here we present new spectra of 1996 FG3 and we compare our new data with other published spectra, analysing the variation in the spectral slope. The asteroid will not be observable again over the next three years at least. We obtained the spectra using DOLORES and NICS instruments at the Telescopio Nazionale Galileo (TNG), a 3.6m telescope located at El Roque de los Muchachos Observatory in La Palma, Spain. To compare with other published spectra of the asteroid, we computed the spectral slope S, and studied any plausible correlation of this quantity with the phase angle (alpha). In the case of visible spectra, we find a variation in spectral slope of Delta S = 0.15 +- 0.10 %/10^3 A/degree for 3 < alpha < 18 degrees, in good agreement with the values found in the literature for the phase reddening effect. In the case of the near-infrared, we find a variation in the slope of Delta S = 0.04 +- 0.08 %/10^3 A/degree for 6 < alpha < 51 degrees. Our computed variation in S agrees with the only two values found in the literature for the phase reddening in the near-infrared. The variation in the spectral slope of asteroid 1996 FG3 shows a trend with the phase angle at the time of the observations, both in the visible and the near-infrared. It is worth noting that, to fully explain this spectral variability we should take into account other factors, like the position of the secondary component of the binary asteroid 1999 FG3 with respect to the primary, or the spin axis orientation at the time of the observations. More data are necessary for an analysis of this kind.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا