Do you want to publish a course? Click here

The orbit and density of the Jupiter Trojan satellite system Eurybates-Queta

93   0   0.0 ( 0 )
 Added by Michael Brown
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report observations of the Jupiter Trojan asteroid (3548) Eurybates and its satellite Queta with the Hubble Space Telescope and use these observations to perform an orbital fit to the system. Queta orbits Eurybates with a semimajor axis of $2350pm11$ km at a period of $82.46pm0.06$ days and an eccentricity of $0.125pm0.009$. From this orbit we derive a mass of Eurybates of $1.51pm0.03 times 10^{17}$ kg, corresponding to an estimated density of $1.1pm0.3$ g cm$^{-3}$, broadly consistent with densities measured for other Trojans, C-type asteroids in the outer main asteroid belt, and small icy objects from the Kuiper belt. Eurybates is the parent body of the only major collisional family among the Jupiter Trojans; its low density suggests that it is a typical member of the Trojan population. Detailed study of this system in 2027 with the Lucy spacecraft flyby should allow significant insight into collisional processes among what appear to be the icy bodies of the Trojan belt.



rate research

Read More

We describe the discovery of a satellite of the Trojan asteroid (3548) Eurybates in images obtained with the Hubble Space Telescope. The satellite was detected on three separate epochs, two in September 2018 and one in January 2020. The satellite has a brightness in all three epochs consistent with an effective diameter of d2 =1.2+/-0.4 km. The projected separation from Eurybates was s~1700-2300 km and varied in position, consistent with a large range of possible orbits. Eurybates is a target of the Lucy Discovery mission and the early detection of a satellite provides an opportunity for a significant expansion of the scientific return from this encounter.
Comet P/2019 LD2 has orbital elements currently resembling those of a Jupiter Trojan, and therefore superficially appears to represent a unique opportunity to study the volatile content and active behavior of a member of this population for the first time. However, numerical integrations show that it was previously a Centaur before reaching its current Jupiter Trojan-like orbit in 2018 July, and is expected to return to being a Centaur in 2028 February, before eventually becoming a Jupiter-family comet in 2063 February. The case of P/2019 LD2 highlights the need for mechanisms to quickly and reliably dynamically classify small solar system bodies discovered in current and upcoming wide-field surveys.
The Eurybates family is a compact core inside the Menelaus clan, located in the L4 swarm of Jupiter Trojans. Fornasier et al. (2007) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and C-type main belt asteroids. On the basis of the visible spectra available in literature, Eurybates familys members seemed to be good candidates for having on their surfaces water/water ice or aqueous altered materials. To improve our knowledge of the surface composition of this peculiar family, we carried out an observational campaign at the Telescopio Nazionale Galileo (TNG), obtaining near-infrared spectra of 7 members. Our data show a surprisingly absence of any spectral feature referable to the presence of water, ices or aqueous altered materials on the surface of the observed objects. Models of the surface composition are attempted, evidencing that amorphous carbon seems to dominate the surface composition of the observed bodies and some amount of silicates (olivine) could be present.
Aims. We investigate the influence of the Yarkovsky force on the long-term orbital evolution of Jupiter Trojan asteroids. Methods. Clones of the observed population with different sizes and different thermal properties were numerically integrated for 1 Gyr with and without the Yarkovsky effect. The escape rate of these objects from the Trojan region as well as changes in the libration amplitude, eccentricity, and inclination were used as a metric of the strength of the Yarkovsky effect on the Trojan orbits. Results. Objects with radii $Rleq$1 km are significantly influenced by the Yarkovsky force. The effect causes a depletion of these objects over timescales of a few hundred million years. As a consequence, we expect the size-frequency distribution of small Trojans to show a shallower slope than that of the currently observable population ($R$ $gtrsim$ 1 km), with a turning point between $R$ = 100 m and $R$ = 1 km. The effect of the Yarkovsky acceleration on the orbits of Trojans depends on the sense of rotation in a complex way. The libration amplitude of prograde rotators decreases with time while the eccentricity increases. Retrograde rotators experience the opposite effect, which results in retrograde rotators being ejected faster from the 1:1 resonance region. Furthermore, for objects affected by the Yarkovsky force, we find indications that the effect tends to smooth out the differences in the orbital distribution between the two clouds.
Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req=125-km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektors system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا