Do you want to publish a course? Click here

High-Spin Doublet Band Structures in odd-odd $^{194-200}$Tl isotopes

89   0   0.0 ( 0 )
 Added by Javid Sheikh
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The basis space in the triaxial projected shell model (TPSM) approach is generalized for odd-odd nuclei to include two-neutron and two-proton configurations on the basic one-neutron coupled to one-proton quasiparticle state. The generalization allows to investigate odd-odd nuclei beyond the band crossing region and as a first application of this development, high-spin band structures recently observed in odd-odd $^{194-200}$Tl isotopes are investigated. In some of these isotopes, the doublet band structures observed after the band crossing have been conjectured to arise from the spontaneous breaking of the chiral symmetry. The driving configuration of the chiral symmetry in these odd-odd isotopes is one-proton and three-neutrons rather than the basic one-proton and one-neutron as already observed in many other nuclei. It is demonstrated using the TPSM approach that energy differences of the doublet bands in $^{194}$Tl and $^{198}$Tl are, indeed, small. However, the differences in the calculated transition probabilities are somewhat larger than what is expected in the chiral symmetry limit. Experimental data on the transition probabilities is needed to shed light on the chiral nature of the doublet bands.



rate research

Read More

The high-spin states in odd-odd $^{194}$Tl nucleus have been studied by populating them using the $^{185,187}$Re($^{13}$C, xn) reactions at 75 MeV of beam energy. $gamma-gamma$ coincidence measurement has been performed using the INGA array with a digital data acquisition system to record the time stamped data. Definite spin-parity assignment of the levels was made from the DCO ratio and the IPDCO ratio measurements. The level scheme of $^{194}$Tl has been extended up to 4.1 MeV in excitation energy including 19 new gamma ray transitions. The $pi h_{9/2} otimes u i_{13/2}$ band, in the neighboring odd-odd Tl isotopes show very similar properties in both experimental observables and calculated shapes. Two new band structures, with 6-quasiparticle configuration, have been observed for the first time in $^{194}$Tl. One of these bands has the characteristics of a magnetic rotational band. The cranked shell model calculations, using a deformed Woods-Saxon potential, have been performed to obtain the total Routhian surfaces in order to study the shapes of the bands and the band crossing in $^{194}$Tl. The semiclassical formalism has been used to describe the magnetic rotational band.
In the present work, the basis space in the triaxial projected shell model approach is expanded to include three and five quasiparticle configurations for odd-proton systems. This extension allows to investigate the high-spin band structures observed in odd-proton systems up to and including the second band crossing region, and as a first major application of this development, the high-spin properties are investigated for odd-mass $^{125-137}$Pr and $^{127-139}$Pm isotopes. It is shown that band crossings in the studied isotopes have mixed structures with first crossing dominated by one-proton coupled to two-neutron configuration for the lighter isotopes which then changes to three-proton configuration with increasing neutron number. Further, $gamma$-bands based on quasiparticle states are also delineated in the present work, and it is predicted that these band structures built on three-quasiparticle configurations become favoured in energy for heavier systems in the high-spin region.
The binding energies of even-even and odd-odd N=Z nuclei are compared. After correcting for the symmetry energy we find that the lowest T=1 state in odd-odd N=Z nuclei is as bound as the ground state in the neighboring even-even nucleus, thus providing evidence for isovector np pairing. However, T=0 states in odd-odd N=Z nuclei are several MeV less bound than the even-even ground states. We associate this difference with a pair gap and conclude that there is no evidence for an isoscalar pairing condensate in N=Z nuclei.
For $N=Z$ odd-odd nuclei, a three-body model assuming two valence particles and an inert core can provide an understanding of pairing correlations in the ground state and spin-isospin excitations. However, since residual core-nucleon interactions can have a significant impact on these quantities, the inclusion of core excitations in the model is essential for useful calculation to be performed. The effect of core excitations must be included in order to gain a detailed understanding of both the ground state and spin-isospin properties of these systems. To this end, we include the vibrational excitation of the core nucleus in our model. We solve the three-body core-nucleon-nucleon problem including core vibrational states to obtain the nuclear ground state as well as spin-isospin excitations. The spin-isospin excitations are examined from the point of view of SU(4) multiplets. By including the effect of core excitation, several experimental quantities of $N=Z$ odd-odd nuclei are better described, and the root mean square distances between proton and neutron and that between the center of mass of proton and neutron and core nucleus increase. Large $B$($M1$) and $B$(GT) observed for $^{18}$F and $^{40}$Ca were explained in terms of the SU(4) symmetry. The core nucleus is meaningfully broken by the residual core-nucleon interactions, and various quantities concerning spin-isospin excitations as well as the ground state become consistent with experimental data. Including the core excitation in the three-body model is thus important for a more detailed understanding of nuclear structure.
187 - Y. Urata , K. Hagino , 2017
We discuss the role of pairing anti-halo effect in the observed odd-even staggering in reaction cross sections for $^{30,31,32}$Ne and $^{36,37,38}$Mg isotopes by taking into account the ground state deformation of these nuclei. To this end, we construct the ground state density for the $^{30,31}$Ne and $^{36,37}$Mg nuclei based on a deformed Woods-Saxon potential, while for the $^{32}$Ne and $^{38}$Mg nuclei we also take into account the pairing correlation using the Hartree-Fock-Bogoliubov method. We demonstrate that, when the one-neutron separation energy is small for the odd-mass nuclei, a significant odd-even staggering still appears even with finite deformation, although the degree of staggering is somewhat reduced compared to the spherical case. This implies that the pairing anti-halo effect in general plays an important role in generating the odd-even staggering in reaction cross sections for weakly bound nuclei.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا