Do you want to publish a course? Click here

Is there np pairing in odd-odd N=Z nuclei?

170   0   0.0 ( 0 )
 Publication date 1999
  fields
and research's language is English




Ask ChatGPT about the research

The binding energies of even-even and odd-odd N=Z nuclei are compared. After correcting for the symmetry energy we find that the lowest T=1 state in odd-odd N=Z nuclei is as bound as the ground state in the neighboring even-even nucleus, thus providing evidence for isovector np pairing. However, T=0 states in odd-odd N=Z nuclei are several MeV less bound than the even-even ground states. We associate this difference with a pair gap and conclude that there is no evidence for an isoscalar pairing condensate in N=Z nuclei.



rate research

Read More

The quartet condensation model (QCM) is extended for the treatment of isovector and isoscalar pairing in odd-odd N=Z nuclei. In the extended QCM approach the lowest states of isospin T=1 and T=0 in odd-odd nuclei are described variationally by trial functions composed by a proton-neutron pair appended to a condensate of 4-body operators. The latter are taken as a linear superposition of an isovector quartet, built by two isovector pairs coupled to the total isospin T=0, and two collective isoscalar pairs. In all pairs the nucleons are distributed in time-reversed single-particle states of axial symmetry. The accuracy of the trial functions is tested for realistic pairing Hamiltonians and odd-odd N=Z nuclei with the valence nucleons moving above the cores $^{16}$O, $^{40}$Ca and $^{100}$Sn. It is shown that the extended QCM approach is able to predict with high accuracy the energies of the lowest T=0 and T=1 states. The present calculations indicate that in these states the isovector and the isoscalar pairing correlations coexist together, with the former playing a dominant role.
For $N=Z$ odd-odd nuclei, a three-body model assuming two valence particles and an inert core can provide an understanding of pairing correlations in the ground state and spin-isospin excitations. However, since residual core-nucleon interactions can have a significant impact on these quantities, the inclusion of core excitations in the model is essential for useful calculation to be performed. The effect of core excitations must be included in order to gain a detailed understanding of both the ground state and spin-isospin properties of these systems. To this end, we include the vibrational excitation of the core nucleus in our model. We solve the three-body core-nucleon-nucleon problem including core vibrational states to obtain the nuclear ground state as well as spin-isospin excitations. The spin-isospin excitations are examined from the point of view of SU(4) multiplets. By including the effect of core excitation, several experimental quantities of $N=Z$ odd-odd nuclei are better described, and the root mean square distances between proton and neutron and that between the center of mass of proton and neutron and core nucleus increase. Large $B$($M1$) and $B$(GT) observed for $^{18}$F and $^{40}$Ca were explained in terms of the SU(4) symmetry. The core nucleus is meaningfully broken by the residual core-nucleon interactions, and various quantities concerning spin-isospin excitations as well as the ground state become consistent with experimental data. Including the core excitation in the three-body model is thus important for a more detailed understanding of nuclear structure.
298 - Y. Tanimura , H. Sagawa , 2013
We study the interplay between the isoscalar (T=0) and isovector (T=1) pairing correlations in N=Z odd-odd nuclei from 14N to 58Cu by using three-body model calculations. The strong spin-triplet T=0 pairing correlation dominates in the ground state of 14N, 18F, 30P, and 58Cu with the spin-parity J^{pi}=1+, which can be well reproduced by the present calculations. The magnetic dipole and Gamow-Teller transitions are found to be strong in 18F and 42Sc as a manifestation of SU(4) symmetry in the spin-isospin space. We also discuss the spin-quadrupole transitions in these nuclei.
We present a new analysis of the pairing vibrations around 56Ni, with emphasis on odd-odd nuclei. This analysis of the experimental excitation energies is based on the subtraction of average properties that include the full symmetry energy together with volume, surface and Coulomb terms. The results clearly indicate a collective behavior of the isovector pairing vibrations and do not support any appreciable collectivity in the isoscalar channel.
In this contribution, we present the cluster shell model which is analogous to the Nilsson model, but for cluster potentials. Special attention is paid to the consequences of the discrete symmetries of three alpha-particles in an equilateral triangle configuration. This configuration is characterized by a special structure of the rotational bands which can be used as a fingerprint of the underlying geometric configuration. The cluster shell model is applied to the nucleus 13C.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا