Do you want to publish a course? Click here

High spin band structures in doubly-odd $^{194}$Tl

155   0   0.0 ( 0 )
 Added by Haridas Pai
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The high-spin states in odd-odd $^{194}$Tl nucleus have been studied by populating them using the $^{185,187}$Re($^{13}$C, xn) reactions at 75 MeV of beam energy. $gamma-gamma$ coincidence measurement has been performed using the INGA array with a digital data acquisition system to record the time stamped data. Definite spin-parity assignment of the levels was made from the DCO ratio and the IPDCO ratio measurements. The level scheme of $^{194}$Tl has been extended up to 4.1 MeV in excitation energy including 19 new gamma ray transitions. The $pi h_{9/2} otimes u i_{13/2}$ band, in the neighboring odd-odd Tl isotopes show very similar properties in both experimental observables and calculated shapes. Two new band structures, with 6-quasiparticle configuration, have been observed for the first time in $^{194}$Tl. One of these bands has the characteristics of a magnetic rotational band. The cranked shell model calculations, using a deformed Woods-Saxon potential, have been performed to obtain the total Routhian surfaces in order to study the shapes of the bands and the band crossing in $^{194}$Tl. The semiclassical formalism has been used to describe the magnetic rotational band.



rate research

Read More

The basis space in the triaxial projected shell model (TPSM) approach is generalized for odd-odd nuclei to include two-neutron and two-proton configurations on the basic one-neutron coupled to one-proton quasiparticle state. The generalization allows to investigate odd-odd nuclei beyond the band crossing region and as a first application of this development, high-spin band structures recently observed in odd-odd $^{194-200}$Tl isotopes are investigated. In some of these isotopes, the doublet band structures observed after the band crossing have been conjectured to arise from the spontaneous breaking of the chiral symmetry. The driving configuration of the chiral symmetry in these odd-odd isotopes is one-proton and three-neutrons rather than the basic one-proton and one-neutron as already observed in many other nuclei. It is demonstrated using the TPSM approach that energy differences of the doublet bands in $^{194}$Tl and $^{198}$Tl are, indeed, small. However, the differences in the calculated transition probabilities are somewhat larger than what is expected in the chiral symmetry limit. Experimental data on the transition probabilities is needed to shed light on the chiral nature of the doublet bands.
135 - D. Kanjilal 2009
Neutron deficient isotopes of Francium (Z=87, N=121-123) as excited nuclei were produced in the fusion-evaporation reaction: 197Au(16O,xn)[213-x]Fr at 100 MeV. The gamma-rays from the residues were observed through the high sensitivity Germanium Clover detector array INGA. The decay of the high spin states and the isomeric states of the doubly-odd 208Fr nuclei, identified from the known sequence of ground state transitions, were observed. The half lives of the 194(2) keV isomeric transition, known from earlier observations, was measured to be 233(18) ns. A second isomeric transition at 383(2) keV and half life of 33(7) ns was also found. The measured half lives were compared with the corresponding single particle estimates, based on a the level scheme obtained from the experiment.
The excited states in the odd-$A$ $^{197}$Tl nucleus have been studied by populating them using the $^{197}$Au($alpha$, 4$n$)$^{197}$Tl reaction at the beam energy of 48 MeV. The $gamma-gamma$ coincidence data were taken using a combination of clover, LEPS and single crystal HPGe detectors. Precise spin and parity assignments of the excited states have been done through the polarization and the DCO measurements. A new band structure has been identified and the evidence for a possible intruder $pi i_{13/2}$ state has been found for the first time. Possible configurations of the observed bands have been discussed. The total Routhian surface calculations have been performed to study the shape of $^{197}$Tl for different configurations.
High-spin states in the odd-odd nucleus $^{168}$Ta have been populated in the $^{120}$Sn($^{51}$V,3n) reaction. Two multi-quasiparticle structures have been extended significantly from spin $sim{20hbar}$ to above ${40hbar}$. As a result, the first rotational alignment has been fully delineated and a second band crossing has been observed for the first time in this nucleus. Configurations for these strongly-coupled rotational bands are proposed based on signature splitting, $B(M1)/B(E2)$ ratio information, and observed rotation-alignment behavior. Properties of the observed bands in $^{168}$Ta are compared to related structures in the neighboring odd-$Z$, odd-$N$, and odd-odd nuclei and are discussed within the framework of the cranked shell model.
High spin states in the odd-odd N=Z nucleus 46V have been identified. At low spin, the T=1 isobaric analogue states of 46Ti are established up to I = 6+. Other high spin states, including the band terminating state, are tentatively assigned to the same T=1 band. The T=0 band built on the low-lying 3+ isomer is observed up to the 1f7/2-shell termination at I=15. Both signatures of a negative parity T=0 band are observed up to the terminating states at I = 16- and I = 17-, respectively. The structure of this band is interpreted as a particle-hole excitation from the 1d3/2 shell. Spherical shell model calculations are found to be in excellent agreement with the experimental results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا