Do you want to publish a course? Click here

Joint Device Scheduling and Resource Allocation for Latency Constrained Wireless Federated Learning

321   0   0.0 ( 0 )
 Added by Sheng Zhou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In federated learning (FL), devices contribute to the global training by uploading their local model updates via wireless channels. Due to limited computation and communication resources, device scheduling is crucial to the convergence rate of FL. In this paper, we propose a joint device scheduling and resource allocation policy to maximize the model accuracy within a given total training time budget for latency constrained wireless FL. A lower bound on the reciprocal of the training performance loss, in terms of the number of training rounds and the number of scheduled devices per round, is derived. Based on the bound, the accuracy maximization problem is solved by decoupling it into two sub-problems. First, given the scheduled devices, the optimal bandwidth allocation suggests allocating more bandwidth to the devices with worse channel conditions or weaker computation capabilities. Then, a greedy device scheduling algorithm is introduced, which in each step selects the device consuming the least updating time obtained by the optimal bandwidth allocation, until the lower bound begins to increase, meaning that scheduling more devices will degrade the model accuracy. Experiments show that the proposed policy outperforms state-of-the-art scheduling policies under extensive settings of data distributions and cell radius.



rate research

Read More

There is an increasing interest in a fast-growing machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), exploiting UEs local computation and training data. Despite its advantages in data privacy-preserving, Federated Learning (FL) still has challenges in heterogeneity across UEs data and physical resources. We first propose a FL algorithm which can handle the heterogeneous UEs data challenge without further assumptions except strongly convex and smooth loss functions. We provide the convergence rate characterizing the trade-off between local computation rounds of UE to update its local model and global communication rounds to update the FL global model. We then employ the proposed FL algorithm in wireless networks as a resource allocation optimization problem that captures the trade-off between the FL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FL is non-convex, we exploit this problems structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights to problem design. Finally, we illustrate the theoretical analysis for the new algorithm with Tensorflow experiments and extensive numerical results for the wireless resource allocation sub-problems. The experiment results not only verify the theoretical convergence but also show that our proposed algorithm outperforms the vanilla FedAvg algorithm in terms of convergence rate and testing accuracy.
With the development of federated learning (FL), mobile devices (MDs) are able to train their local models with private data and sends them to a central server for aggregation, thereby preventing sensitive raw data leakage. In this paper, we aim to improve the training performance of FL systems in the context of wireless channels and stochastic energy arrivals of MDs. To this purpose, we dynamically optimize MDs transmission power and training task scheduling. We first model this dynamic programming problem as a constrained Markov decision process (CMDP). Due to high dimensions rooted from our CMDP problem, we propose online stochastic learning methods to simplify the CMDP and design online algorithms to obtain an efficient policy for all MDs. Since there are long-term constraints in our CMDP, we utilize Lagrange multipliers approach to tackle this issue. Furthermore, we prove the convergence of the proposed online stochastic learning algorithm. Numerical results indicate that the proposed algorithms can achieve better performance than the benchmark algorithms.
Edge machine learning involves the development of learning algorithms at the network edge to leverage massive distributed data and computation resources. Among others, the framework of federated edge learning (FEEL) is particularly promising for its data-privacy preservation. FEEL coordinates global model training at a server and local model training at edge devices over wireless links. In this work, we explore the new direction of energy-efficient radio resource management (RRM) for FEEL. To reduce devices energy consumption, we propose energy-efficient strategies for bandwidth allocation and scheduling. They adapt to devices channel states and computation capacities so as to reduce their sum energy consumption while warranting learning performance. In contrast with the traditional rate-maximization designs, the derived optimal policies allocate more bandwidth to those scheduled devices with weaker channels or poorer computation capacities, which are the bottlenecks of synchronized model updates in FEEL. On the other hand, the scheduling priority function derived in closed form gives preferences to devices with better channels and computation capacities. Substantial energy reduction contributed by the proposed strategies is demonstrated in learning experiments.
Owing to the increasing need for massive data analysis and model training at the network edge, as well as the rising concerns about the data privacy, a new distributed training framework called federated learning (FL) has emerged. In each iteration of FL (called round), the edge devices update local models based on their own data and contribute to the global training by uploading the model updates via wireless channels. Due to the limited spectrum resources, only a portion of the devices can be scheduled in each round. While most of the existing work on scheduling focuses on the convergence of FL w.r.t. rounds, the convergence performance under a total training time budget is not yet explored. In this paper, a joint bandwidth allocation and scheduling problem is formulated to capture the long-term convergence performance of FL, and is solved by being decoupled into two sub-problems. For the bandwidth allocation sub-problem, the derived optimal solution suggests to allocate more bandwidth to the devices with worse channel conditions or weaker computation capabilities. For the device scheduling sub-problem, by revealing the trade-off between the number of rounds required to attain a certain model accuracy and the latency per round, a greedy policy is inspired, that continuously selects the device that consumes the least time in model updating until achieving a good trade-off between the learning efficiency and latency per round. The experiments show that the proposed policy outperforms other state-of-the-art scheduling policies, with the best achievable model accuracy under training time budgets.
Motivated by the increasing computational capacity of wireless user equipments (UEs), e.g., smart phones, tablets, or vehicles, as well as the increasing concerns about sharing private data, a new machine learning model has emerged, namely federated learning (FL), that allows a decoupling of data acquisition and computation at the central unit. Unlike centralized learning taking place in a data center, FL usually operates in a wireless edge network where the communication medium is resource-constrained and unreliable. Due to limited bandwidth, only a portion of UEs can be scheduled for updates at each iteration. Due to the shared nature of the wireless medium, transmissions are subjected to interference and are not guaranteed. The performance of FL system in such a setting is not well understood. In this paper, an analytical model is developed to characterize the performance of FL in wireless networks. Particularly, tractable expressions are derived for the convergence rate of FL in a wireless setting, accounting for effects from both scheduling schemes and inter-cell interference. Using the developed analysis, the effectiveness of three different scheduling policies, i.e., random scheduling (RS), round robin (RR), and proportional fair (PF), are compared in terms of FL convergence rate. It is shown that running FL with PF outperforms RS and RR if the network is operating under a high signal-to-interference-plus-noise ratio (SINR) threshold, while RR is more preferable when the SINR threshold is low. Moreover, the FL convergence rate decreases rapidly as the SINR threshold increases, thus confirming the importance of compression and quantization of the update parameters. The analysis also reveals a trade-off between the number of scheduled UEs and subchannel bandwidth under a fixed amount of available spectrum.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا