Do you want to publish a course? Click here

Federated Learning Over Wireless Channels: Dynamic Resource Allocation and Task Scheduling

75   0   0.0 ( 0 )
 Added by Shunfeng Chu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

With the development of federated learning (FL), mobile devices (MDs) are able to train their local models with private data and sends them to a central server for aggregation, thereby preventing sensitive raw data leakage. In this paper, we aim to improve the training performance of FL systems in the context of wireless channels and stochastic energy arrivals of MDs. To this purpose, we dynamically optimize MDs transmission power and training task scheduling. We first model this dynamic programming problem as a constrained Markov decision process (CMDP). Due to high dimensions rooted from our CMDP problem, we propose online stochastic learning methods to simplify the CMDP and design online algorithms to obtain an efficient policy for all MDs. Since there are long-term constraints in our CMDP, we utilize Lagrange multipliers approach to tackle this issue. Furthermore, we prove the convergence of the proposed online stochastic learning algorithm. Numerical results indicate that the proposed algorithms can achieve better performance than the benchmark algorithms.



rate research

Read More

100 - Xiumei Deng , Jun Li , Chuan Ma 2021
Blockchain assisted federated learning (BFL) has been intensively studied as a promising technology to process data at the network edge in a distributed manner. In this paper, we focus on BFL over wireless environments with varying channels and energy harvesting at clients. We are interested in proposing dynamic resource allocation (i.e., transmit power, computation frequency for model training and block mining for each client) and client scheduling (DRACS) to maximize the long-term time average (LTA) training data size with an LTA energy consumption constraint. Specifically, we first define the Lyapunov drift by converting the LTA energy consumption to a queue stability constraint. Then, we construct a Lyapunov drift-plus-penalty ratio function to decouple the original stochastic problem into multiple deterministic optimizations along the time line. Our construction is capable of dealing with uneven durations of communication rounds. To make the one-shot deterministic optimization problem of combinatorial fractional form tractable, we next convert the fractional problem into a subtractive-form one by Dinkelbach method, which leads to the asymptotically optimal solution in an iterative way. In addition, the closed-form of the optimal resource allocation and client scheduling is obtained in each iteration with a low complexity. Furthermore, we conduct the performance analysis for the proposed algorithm, and discover that the LTA training data size and energy consumption obey an [$mathcal{O}(1/V)$, $mathcal{O}(sqrt{V})$] trade-off. Our experimental results show that the proposed algorithm can provide both higher learning accuracy and faster convergence with limited time and energy consumption based on the MNIST and Fashion-MNIST datasets.
There is an increasing interest in a fast-growing machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), exploiting UEs local computation and training data. Despite its advantages in data privacy-preserving, Federated Learning (FL) still has challenges in heterogeneity across UEs data and physical resources. We first propose a FL algorithm which can handle the heterogeneous UEs data challenge without further assumptions except strongly convex and smooth loss functions. We provide the convergence rate characterizing the trade-off between local computation rounds of UE to update its local model and global communication rounds to update the FL global model. We then employ the proposed FL algorithm in wireless networks as a resource allocation optimization problem that captures the trade-off between the FL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FL is non-convex, we exploit this problems structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights to problem design. Finally, we illustrate the theoretical analysis for the new algorithm with Tensorflow experiments and extensive numerical results for the wireless resource allocation sub-problems. The experiment results not only verify the theoretical convergence but also show that our proposed algorithm outperforms the vanilla FedAvg algorithm in terms of convergence rate and testing accuracy.
In federated learning (FL), devices contribute to the global training by uploading their local model updates via wireless channels. Due to limited computation and communication resources, device scheduling is crucial to the convergence rate of FL. In this paper, we propose a joint device scheduling and resource allocation policy to maximize the model accuracy within a given total training time budget for latency constrained wireless FL. A lower bound on the reciprocal of the training performance loss, in terms of the number of training rounds and the number of scheduled devices per round, is derived. Based on the bound, the accuracy maximization problem is solved by decoupling it into two sub-problems. First, given the scheduled devices, the optimal bandwidth allocation suggests allocating more bandwidth to the devices with worse channel conditions or weaker computation capabilities. Then, a greedy device scheduling algorithm is introduced, which in each step selects the device consuming the least updating time obtained by the optimal bandwidth allocation, until the lower bound begins to increase, meaning that scheduling more devices will degrade the model accuracy. Experiments show that the proposed policy outperforms state-of-the-art scheduling policies under extensive settings of data distributions and cell radius.
70 - Kang Wei , Jun Li , Chuan Ma 2021
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server. The performance of uploaded models in such situations can vary widely due to imbalanced data distributions, potential demands on privacy protections, and quality of transmissions. In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each clients differential privacy (DP) requirement. We solve this problem in the framework of multi-agent multi-armed bandit (MAMAB) to deal with the situation where there are multiple clients confornting different unknown transmission environments, e.g., channel fading and interferences. Specifically, we first transform the long-term constraints on both training performance and each clients DP into a virtual queue based on the Lyapunov drift technique. Then, we convert the MAMAB to a max-min bipartite matching problem at each communication round, by estimating rewards with the upper confidence bound (UCB) approach. More importantly, we propose two efficient solutions to this matching problem, i.e., modified Hungarian algorithm and greedy matching with a better alternative (GMBA), in which the first one can achieve the optimal solution with a high complexity while the second one approaches a better trade-off by enabling a verified low-complexity with little performance loss. In addition, we develop an upper bound on the expected regret of this MAMAB based FL framework, which shows a linear growth over the logarithm of communication rounds, justifying its theoretical feasibility. Extensive experimental results are conducted to validate the effectiveness of our proposed algorithms, and the impacts of various parameters on the FL performance over wireless edge networks are also discussed.
In this paper, the problem of minimizing energy and time consumption for task computation and transmission is studied in a mobile edge computing (MEC)-enabled balloon network. In the considered network, each user needs to process a computational task in each time instant, where high-altitude balloons (HABs), acting as flying wireless base stations, can use their powerful computational abilities to process the tasks offloaded from their associated users. Since the data size of each users computational task varies over time, the HABs must dynamically adjust the user association, service sequence, and task partition scheme to meet the users needs. This problem is posed as an optimization problem whose goal is to minimize the energy and time consumption for task computing and transmission by adjusting the user association, service sequence, and task allocation scheme. To solve this problem, a support vector machine (SVM)-based federated learning (FL) algorithm is proposed to determine the user association proactively. The proposed SVM-based FL method enables each HAB to cooperatively build an SVM model that can determine all user associations without any transmissions of either user historical associations or computational tasks to other HABs. Given the prediction of the optimal user association, the service sequence and task allocation of each user can be optimized so as to minimize the weighted sum of the energy and time consumption. Simulations with real data of city cellular traffic from the OMNILab at Shanghai Jiao Tong University show that the proposed algorithm can reduce the weighted sum of the energy and time consumption of all users by up to 16.1% compared to a conventional centralized method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا