No Arabic abstract
We analyze the transport and deposition behavior of dilute microparticles in turbulent Rayleigh-Benard convection. Two-dimensional direct numerical simulations were carried out for the Rayleigh number ($Ra$) of $10^{8}$ and the Prandtl number ($Pr$) of 0.71 (corresponding to the working fluids of air). The Lagrangian point particle model was used to describe the motion of microparticles in the turbulence. Our results show that the suspended particles are homogeneously distributed in the turbulence for the Stokes number ($St$) less than $10^{-3}$, and they tend to cluster into bands for $10^{-3} lesssim St lesssim 10^{-2}$. At even larger $St$, the microparticles will quickly sediment in the convection. We also calculate the mean-square displacement (MSD) of the particles trajectories. At short time intervals, the MSD exhibits a ballistic regime, and it is isotropic in vertical and lateral directions; at longer time intervals, the MSD reflects a confined motion for the particles, and it is anisotropic in different directions. We further obtained a phase diagram of the particle deposition positions on the wall, and we identified three deposition states depending on the particles density and diameter. An interesting finding is that the dispersed particles preferred to deposit on the vertical wall where the hot plumes arise, which is verified by tilting the cell and altering the rotation direction of the large-scale circulation.
We report the statistical properties of temperature and thermal energy dissipation rate in low-Prandtl number turbulent Rayleigh-Benard convection. High resolution two-dimensional direct numerical simulations were carried out for the Rayleigh number ($Ra$) of $10^{6} le Ra le 10^{7}$ and the Prandtl number ($Pr$) of 0.025. Our results show that the global heat transport and momentum scaling in terms of Nusselt number ($Nu$) and Reynolds number ($Re$) are $Nu=0.21Ra^{0.25}$ and $Re=6.11Ra^{0.50}$, respectively, indicating that the scaling exponents are smaller than those for moderate-Prandtl number fluids (such as water or air) in the same convection cell. In the central region of the cell, probability density functions (PDFs) of temperature profiles show stretched exponential peak and the Gaussian tail; in the sidewall region, PDFs of temperature profiles show a multimodal distribution at relative lower $Ra$, while they approach the Gaussian profile at relative higher $Ra$. We split the energy dissipation rate into contributions from bulk and boundary layers and found the locally averaged thermal energy dissipation rate from the boundary layer region is an order of magnitude larger than that from the bulk region. Even if the much smaller volume occupied by the boundary layer region is considered, the globally averaged thermal energy dissipation rate from the boundary layer region is still larger than that from the bulk region. We further numerically determined the scaling exponents of globally averaged thermal energy dissipation rates as functions of $Ra$ and $Re$.
We report an experimental study aiming to clarify the role of boundary conditions (BC) in high Rayleigh number $10^8 < {rm{Ra}} < 3 times 10^{12}$ turbulent thermal convection of cryogenic helium gas. We switch between BC closer to constant heat flux (CF) and constant temperature (CT) applied to the highly conducting bottom plate of the aspect ratio one cylindrical cell 30 cm in size, leading to dramatic changes in the temperature probability density function and in power spectral density of the temperature fluctuations measured at the bottom plate, while the dynamic thermal behaviour of the top plate and bulk convective flow remain unaffected. Within our experimental accuracy, we find no appreciable changes in Reynolds number Re(Ra) scaling, in the dimensionless heat transfer efficiency expressed via Nusselt number Nu(Ra) scaling, nor in the rate of direction reversals of large scale circulation.
We report an experimental study of the three-dimensional spatial structure of the low frequency temperature oscillations in a cylindrical Rayleigh-B{e}nard convection cell. It is found that thermal plumes are not emitted periodically, but randomly and continuously, from the top and bottom plates. We further found that the oscillation of the temperature field does not originate from the boundary layers, but rather is a result of the horizontal motion of the hot ascending and cold descending fluids being modulated by the twisting and sloshing motion of the bulk flow field.
Recently, in Zhang et al. (2020), it was found that in rapidly rotating turbulent Rayleigh-Benard convection (RBC) in slender cylindrical containers (with diameter-to-height aspect ratio $Gamma=1/2$) filled with a small-Prandtl-number fluid ($Pr approx0.8$), the Large Scale Circulation (LSC) is suppressed and a Boundary Zonal Flow (BZF) develops near the sidewall, characterized by a bimodal PDF of the temperature, cyclonic fluid motion, and anticyclonic drift of the flow pattern (with respect to the rotating frame). This BZF carries a disproportionate amount ($>60%$) of the total heat transport for $Pr < 1$ but decreases rather abruptly for larger $Pr$ to about $35%$. In this work, we show that the BZF is robust and appears in rapidly rotating turbulent RBC in containers of different $Gamma$ and in a broad range of $Pr$ and $Ra$. Direct numerical simulations for $0.1 leq Pr leq 12.3$, $10^7 leq Ra leq 5times10^{9}$, $10^{5} leq 1/Ek leq 10^{7}$ and $Gamma$ = 1/3, 1/2, 3/4, 1 and 2 show that the BZF width $delta_0$ scales with the Rayleigh number $Ra$ and Ekman number $Ek$ as $delta_0/H sim Gamma^{0} Pr^{{-1/4, 0}} Ra^{1/4} Ek^{2/3}$ (${Pr<1, Pr>1}$) and the drift frequency as $omega/Omega sim Gamma^{0} Pr^{-4/3} Ra Ek^{5/3}$, where $H$ is the cell height and $Omega$ the angular rotation rate. The mode number of the BZF is 1 for $Gamma lesssim 1$ and $2 Gamma$ for $Gamma$ = {1,2} independent of $Ra$ and $Pr$. The BZF is quite reminiscent of wall mode states in rotating convection.
To understand how internal flow structures manifest themselves in the global heat transfer, we study the correlation between different flow modes and the instantaneous Nusselt number ($Nu$) in a two-dimensional square Rayleigh-Benard convection cell. High-resolution and long-time direct numerical simulations are carried out for Rayleigh numbers between $10^{7}$ and $10^{9}$ and a Prandtl number of 5.3. The investigated Nusselt numbers include the volume-averaged $Nu_{text{vol}}$, the wall-averaged $Nu_{text{wall}}$, the kinetic energy dissipation based $Nu_{text{kinetic}}$, and the thermal energy dissipation based $Nu_{text{thermal}}$. The Fourier mode decomposition and proper orthogonal decomposition are adopted to extract the coherent flow structure. Our results show that the single-roll mode, the horizontally stacked double-roll mode, and the quadrupolar flow mode are more efficient for heat transfer on average. In contrast, the vertically stacked double-roll mode is inefficient for heat transfer on average. The volume-averaged $Nu_{text{vol}}$ and the kinetic energy dissipation based $Nu_{text{kinetic}}$ can better reproduce the correlation of internal flow structures with heat transfer efficiency than that of the wall-averaged $Nu_{text{wall}}$ and the thermal energy dissipation based $Nu_{text{thermal}}$, even though these four Nusselt numbers give consistent time-averaged mean values. The ensemble-averaged time trace of $Nu$ during flow reversal shows that only the volume-averaged $Nu_{text{vol}}$ can reproduce the overshoot phenomena that is observed in the previous experimental study. Our results reveal that the proper choice of $Nu$ is critical to obtain a meaningful interpretation.