Do you want to publish a course? Click here

Correlation of internal flow structure with heat transfer efficiency in turbulent Rayleigh-Benard convection

99   0   0.0 ( 0 )
 Added by Ao Xu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

To understand how internal flow structures manifest themselves in the global heat transfer, we study the correlation between different flow modes and the instantaneous Nusselt number ($Nu$) in a two-dimensional square Rayleigh-Benard convection cell. High-resolution and long-time direct numerical simulations are carried out for Rayleigh numbers between $10^{7}$ and $10^{9}$ and a Prandtl number of 5.3. The investigated Nusselt numbers include the volume-averaged $Nu_{text{vol}}$, the wall-averaged $Nu_{text{wall}}$, the kinetic energy dissipation based $Nu_{text{kinetic}}$, and the thermal energy dissipation based $Nu_{text{thermal}}$. The Fourier mode decomposition and proper orthogonal decomposition are adopted to extract the coherent flow structure. Our results show that the single-roll mode, the horizontally stacked double-roll mode, and the quadrupolar flow mode are more efficient for heat transfer on average. In contrast, the vertically stacked double-roll mode is inefficient for heat transfer on average. The volume-averaged $Nu_{text{vol}}$ and the kinetic energy dissipation based $Nu_{text{kinetic}}$ can better reproduce the correlation of internal flow structures with heat transfer efficiency than that of the wall-averaged $Nu_{text{wall}}$ and the thermal energy dissipation based $Nu_{text{thermal}}$, even though these four Nusselt numbers give consistent time-averaged mean values. The ensemble-averaged time trace of $Nu$ during flow reversal shows that only the volume-averaged $Nu_{text{vol}}$ can reproduce the overshoot phenomena that is observed in the previous experimental study. Our results reveal that the proper choice of $Nu$ is critical to obtain a meaningful interpretation.



rate research

Read More

We numerically investigate turbulent Rayleigh-Benard convection within two immiscible fluid layers, aiming to understand how the layer thickness and fluid properties affect the heat transfer (characterized by the Nusselt number $Nu$) in two-layer systems. Both two- and three-dimensional simulations are performed at fixed global Rayleigh number $Ra=10^8$, Prandtl number $Pr=4.38$, and Weber number $We=5$. We vary the relative thickness of the upper layer between $0.01 le alpha le 0.99$ and the thermal conductivity coefficient ratio of the two liquids between $0.1 le lambda_k le 10$. Two flow regimes are observed: In the first regime at $0.04lealphale0.96$, convective flows appear in both layers and $Nu$ is not sensitive to $alpha$. In the second regime at $alphale0.02$ or $alphage0.98$, convective flow only exists in the thicker layer, while the thinner one is dominated by pure conduction. In this regime, $Nu$ is sensitive to $alpha$. To predict $Nu$ in the system in which the two layers are separated by a unique interface, we apply the Grossmann-Lohse theory for both individual layers and impose heat flux conservation at the interface. Without introducing any free parameter, the predictions for $Nu$ and for the temperature at the interface well agree with our numerical results and previous experimental data.
For rapidly rotating turbulent Rayleigh--Benard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of the BZF is cyclonic (in the rotating frame), the temperature is an anticyclonic traveling wave of mode one whose signature is a bimodal temperature distribution near the radial boundary. The BZF width is found to scale like $Ra^{1/4}Ek^{2/3}$ where the Ekman number $Ek$ decreases with increasing rotation rate.
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Rasim 10^9$. Power law scalings of $Nusim Ra^{gamma}$ are observed with $gammaapprox 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a single updraft absent significant horizontal structure, and characterized by the larger maximal wavenumber.
In this numerical study on Rayleigh-Benard convection we seek to improve the heat transfer by passive means. To this end we introduce a single tilted conductive barrier centered in an aspect ratio one cell, breaking the symmetry of the geometry and to channel the ascending hot and descending cold plumes. We study the global and local heat transfer and the flow organization for Rayleigh numbers $10^5 leq Ra leq 10^9$ for a fixed Prandtl number of $Pr=4.3$. We find that the global heat transfer can be enhanced up to $18%$, and locally around $800%$. The averaged Reynolds number is always decreased when a barrier is introduced, even for those cases where the global heat transfer is increased. We map the entire parameter space spanned by the orientation and the size of a single barrier for $Ra=10^8$.
We analyse the nonlinear dynamics of the large scale flow in Rayleigh-Benard convection in a two-dimensional, rectangular geometry of aspect ratio $Gamma$. We impose periodic and free-slip boundary conditions in the streamwise and spanwise directions, respectively. As Rayleigh number Ra increases, a large scale zonal flow dominates the dynamics of a moderate Prandtl number fluid. At high Ra, in the turbulent regime, transitions are seen in the probability density function (PDF) of the largest scale mode. For $Gamma = 2$, the PDF first transitions from a Gaussian to a trimodal behaviour, signifying the emergence of reversals of the zonal flow where the flow fluctuates between three distinct turbulent states: two states in which the zonal flow travels in opposite directions and one state with no zonal mean flow. Further increase in Ra leads to a transition from a trimodal to a unimodal PDF which demonstrates the disappearance of the zonal flow reversals. On the other hand, for $Gamma = 1$ the zonal flow reversals are characterised by a bimodal PDF of the largest scale mode, where the flow fluctuates only between two distinct turbulent states with zonal flow travelling in opposite directions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا