Do you want to publish a course? Click here

Fermion-boson many-body interplay in a frustrated kagome paramagnet

122   0   0.0 ( 0 )
 Added by Jiaxin Yin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Kagome-net, appearing in areas of fundamental physics, materials, photonic and cold-atom systems, hosts frustrated fermionic and bosonic excitations. However, it is extremely rare to find a system to study both fermionic and bosonic modes to gain insights into their many-body interplay. Here we use state-of-the-art scanning tunneling microscopy and spectroscopy to discover unusual electronic coupling to flat-band phonons in a layered kagome paramagnet. Our results reveal the kagome structure with unprecedented atomic resolution and observe the striking bosonic mode interacting with dispersive kagome electrons near the Fermi surface. At this mode energy, the fermionic quasi-particle dispersion exhibits a pronounced renormalization, signaling a giant coupling to bosons. Through a combination of self-energy analysis, first-principles calculation, and a lattice vibration model, we present evidence that this mode arises from the geometrically frustrated phonon flat-band, which is the lattice analog of kagome electron flat-band. Our findings provide the first example of kagome bosonic mode (flat-band phonon) in electronic excitations and its strong interaction with fermionic degrees of freedom in kagome-net materials.

rate research

Read More

152 - Hang Li , Bei Ding , Jie Chen 2019
We report on the observation of a large topological Hall effect (THE) over a wide temperature region in a geometrically frustrated Fe3Sn2 magnet with a kagome-bilayer structure. We found that the magnitude of the THE resistivity increases with temperature and reaches -0.875 {mu}{Omega}.cm at 380 K. Moreover, the critical magnetic fields with the change of THE are consistent with the magnetic structure transformation, which indicates that the real-space fictitious magnetic field is proportional to the formation of magnetic skyrmions in Fe3Sn2. The results strongly suggest that the large THE originates from the topological magnetic spin textures and may open up further research opportunities in exploring emergent phenomena in kagome materials.
141 - Zhonghao Liu , Man Li , Qi Wang 2020
Layered kagome-lattice 3d transition metals are emerging as an exciting platform to explore the frustrated lattice geometry and quantum topology. However, the typical kagome electronic bands, characterized by sets of the Dirac-like band capped by a phase-destructive flat band, have not been clearly observed, and their orbital physics are even less well investigated. Here, we present close-to-textbook kagome bands with orbital differentiation physics in CoSn, which can be well described by a minimal tight-binding model with single-orbital hopping in Co kagome lattice. The capping flat bands with bandwidth less than 0.2 eV run through the whole Brillouin zone, especially the bandwidth of the flat band of out-of-plane orbitals is less than 0.02 eV along G-M. The energy gap induced by spin-orbit interaction at the Dirac cone of out-of-plane orbitals is much smaller than that of in-plane orbitals, suggesting orbital-selective character of the Dirac fermions.
We present a compressive sensing approach for the long standing problem of Matsubara summation in many-body perturbation theory. By constructing low-dimensional, almost isometric subspaces of the Hilbert space we obtain optimum imaginary time and frequency grids that allow for extreme data compression of fermionic and bosonic functions in a broad temperature regime. The method is applied to the random phase and self-consistent $GW$ approximation of the grand potential. Integration and transformation errors are investigated for Si and SrVO$_3$.
A large collaboration carefully benchmarks 20 first principles many-body electronic structure methods on a test set of 7 transition metal atoms, and their ions and monoxides. Good agreement is attained between the 3 systematically converged methods, resulting in experiment-free reference values. These reference values are used to assess the accuracy of modern emerging and scalable approaches to the many-electron problem. The most accurate methods obtain energies indistinguishable from experimental results, with the agreement mainly limited by the experimental uncertainties. Comparison between methods enables a unique perspective on calculations of many-body systems of electrons.
The Laves phase compound, YCo2, is a well-known exchange-enahnced Pauli paramagnet. We report here that, in the nanocrystalline form, this compound interestingly is an itinerant ferromagnet at room temperature with a low coercive-field. The magnitude of the saturation moment (about 1 Bohr-magneton per formula unit) is large enough to infer that the ferromagnetism is not a surface phenomenon in these nanocrystallites. Since these ferromagnetic nanocrystallines are easy to synthesize with a stable form in air, one can explore applications, particularly where hysteresis is a disadvantage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا