Do you want to publish a course? Click here

Direct comparison of many-body methods for realistic electronic Hamiltonians

102   0   0.0 ( 0 )
 Added by Lucas Wagner
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A large collaboration carefully benchmarks 20 first principles many-body electronic structure methods on a test set of 7 transition metal atoms, and their ions and monoxides. Good agreement is attained between the 3 systematically converged methods, resulting in experiment-free reference values. These reference values are used to assess the accuracy of modern emerging and scalable approaches to the many-electron problem. The most accurate methods obtain energies indistinguishable from experimental results, with the agreement mainly limited by the experimental uncertainties. Comparison between methods enables a unique perspective on calculations of many-body systems of electrons.



rate research

Read More

Coupling a quantum many-body system to an external environment dramatically changes its dynamics and offers novel possibilities not found in closed systems. Of special interest are the properties of the steady state of such open quantum many-body systems, as well as the relaxation dynamics towards the steady state. However, new computational tools are required to simulate open quantum many-body systems, as methods developed for closed systems cannot be readily applied. We review several approaches to simulate open many-body systems and point out the advances made in recent years towards the simulation of large system sizes.
Molecular adsorption on surfaces plays a central role in catalysis, corrosion, desalination, and many other processes of relevance to industry and the natural world. Few adsorption systems are more ubiquitous or of more widespread importance than those involving water and carbon, and for a molecular level understanding of such interfaces water monomer adsorption on graphene is a fundamental and representative system. This system is particularly interesting as it calls for an accurate treatment of electron correlation effects, as well as posing a practical challenge to experiments. Here, we employ many-body electronic structure methodologies that can be rigorously converged and thus provide faithful references for the molecule-surface interaction. In particular, we use diffusion Monte-Carlo (DMC), coupled cluster (CCSD(T)), as well as the random phase approximation (RPA) to calculate the strength of the interaction between water and an extended graphene surface. We establish excellent, sub-chemical, agreement between the complementary high-level methodologies, and an adsorption energy estimate in the most stable configuration of approximately -100,meV is obtained. We also find that the adsorption energy is rather insensitive to the orientation of the water molecule on the surface, despite different binding motifs involving qualitatively different interfacial charge reorganisation. In producing the first demonstrably accurate adsorption energies for water on graphene this work also resolves discrepancies amongst previously reported values for this widely studied system. It also paves the way for more accurate and reliable studies of liquid water at carbon interfaces with cheaper computational methods, such as density functional theory and classical potentials.
Kagome-net, appearing in areas of fundamental physics, materials, photonic and cold-atom systems, hosts frustrated fermionic and bosonic excitations. However, it is extremely rare to find a system to study both fermionic and bosonic modes to gain insights into their many-body interplay. Here we use state-of-the-art scanning tunneling microscopy and spectroscopy to discover unusual electronic coupling to flat-band phonons in a layered kagome paramagnet. Our results reveal the kagome structure with unprecedented atomic resolution and observe the striking bosonic mode interacting with dispersive kagome electrons near the Fermi surface. At this mode energy, the fermionic quasi-particle dispersion exhibits a pronounced renormalization, signaling a giant coupling to bosons. Through a combination of self-energy analysis, first-principles calculation, and a lattice vibration model, we present evidence that this mode arises from the geometrically frustrated phonon flat-band, which is the lattice analog of kagome electron flat-band. Our findings provide the first example of kagome bosonic mode (flat-band phonon) in electronic excitations and its strong interaction with fermionic degrees of freedom in kagome-net materials.
The formation energies and electronic structure of europium doped zinc oxide has been determined using DFT and many-body $GW$ methods. In the absence of intrisic defects we find that the europium-$f$ states are located in the ZnO band gap with europium possessing a formal charge of 2+. On the other hand, the presence of intrinsic defects in ZnO allows intraband $f-f$ transitions otherwise forbidden in atomic europium. This result coorroborates with recently observed photoluminescence in the visible red region [1].
We use a spatially resolved, direct spectroscopic probe for electronic structure with an additional sensitivity to chemical compositions to investigate high-quality single crystal samples of La_{1/4}Pr_{3/8}Ca_{3/8}MnO_{3}, establishing the formation of distinct insulating domains embedded in the metallic host at low temperatures. These domains are found to be at least an order of magnitude larger in size compared to previous estimates and exhibit memory effects on temperature cycling in the absence of any perceptible chemical inhomogeneity, suggesting long-range strains as the probable origin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا