Do you want to publish a course? Click here

Large topological Hall effect in a geometrically frustrated kagome magnet Fe$_3$Sn$_2$

153   0   0.0 ( 0 )
 Added by Hang Li
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the observation of a large topological Hall effect (THE) over a wide temperature region in a geometrically frustrated Fe3Sn2 magnet with a kagome-bilayer structure. We found that the magnitude of the THE resistivity increases with temperature and reaches -0.875 {mu}{Omega}.cm at 380 K. Moreover, the critical magnetic fields with the change of THE are consistent with the magnetic structure transformation, which indicates that the real-space fictitious magnetic field is proportional to the formation of magnetic skyrmions in Fe3Sn2. The results strongly suggest that the large THE originates from the topological magnetic spin textures and may open up further research opportunities in exploring emergent phenomena in kagome materials.



rate research

Read More

Kagome magnets are believed to have numerous exotic physical properties due to the possible interplay between lattice geometry, electron correlation and band topology. Here, we report the large anomalous Hall effect in the kagome ferromagnet LiMn$_6$Sn$_6$, which has a Curie temperature of 382 K and easy plane along with the kagome lattice. At low temperatures, unsaturated positive magnetoresistance and opposite signs of ordinary Hall coefficient for $rho_{xz}$ and $rho_{yx}$ indicate the coexistence of electrons and holes in the system. A large intrinsic anomalous Hall conductivity of 380 $Omega^{-1}$ cm$^{-1}$, or 0.44 $e^2/h$ per Mn layer, is observed in $sigma_{xy}^A$. This value is significantly larger than those in other $R$Mn$_6$Sn$_6$ ($R$ = rare earth elements) kagome compounds. Band structure calculations show several band crossings, including a spin-polarized Dirac point at the K point, close to the Fermi energy. The calculated intrinsic Hall conductivity agrees well with the experimental value, and shows a maximum peak near the Fermi energy. We attribute the large anomalous Hall effect in LiMn$_6$Sn$_6$ to the band crossings closely located near the Fermi energy.
Magnetic materials with kagome crystal structure exhibit rich physics such as frustrated magnetism, skyrmion formation, topological flat bands, and Dirac/Weyl points. Until recently, most studies on kagome magnets have been performed on bulk crystals or polycrystalline films. Here we report the synthesis of high-quality epitaxial films of topological kagome magnet Fe$_3$Sn$_2$ by atomic layer molecular beam epitaxy. Structural and magnetic characterization of Fe$_3$Sn$_2$ on epitaxial Pt(111) identifies highly ordered films with c-plane orientation and an in-plane magnetic easy axis. Studies of the local magnetic structure by anomalous Nernst effect imaging reveals in-plane oriented micrometer size domains. The realization of high-quality films by atomic layer molecular beam epitaxy opens the door to explore the rich physics of this system and investigate novel spintronic phenomena by interfacing Fe$_3$Sn$_2$ with other materials.
135 - M. Tanaka , Y. Fujishiro , M. Mogi 2020
Magnetic Weyl semimetals attract considerable interest not only for their topological quantum phenomena but also as an emerging materials class for realizing quantum anomalous Hall effect in the two-dimensional limit. A shandite compound Co3Sn2S2 with layered Kagome-lattices is one such material, where vigorous efforts have been devoted to synthesize the two-dimensional crystal. Here we report a synthesis of Co3Sn2S2 thin flakes with a thickness of 250 nm by chemical vapor transport method. We find that this facile bottom-up approach allows the formation of large-sized Co3Sn2S2 thin flakes of high-quality, where we identify the largest electron mobility (~2,600 cm2V-1s-1) among magnetic topological semimetals, as well as the large anomalous Hall conductivity (~1,400 {Omega}-1cm-1) and anomalous Hall angle (~32 %) arising from the Berry curvature. Our study provides a viable platform for studying high-quality thin flakes of magnetic Weyl semimetal and stimulate further research on unexplored topological phenomena in the two-dimensional limit.
Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. However, the magnetic nature of these materials in the presence of topological state remains an unsolved issue. Here, we explore magnetic correlations in the kagome magnet Co_3Sn_2S_2. Using muon spin-rotation, we present evidence for competing magnetic orders in the kagome lattice of this compound. Our results show that while the sample exhibits an out-of-plane ferromagnetic ground state, an in-plane antiferromagnetic state appears at temperatures above 90 K, eventually attaining a volume fraction of 80% around 170 K, before reaching a non-magnetic state. Strikingly, the reduction of the anomalous Hall conductivity above 90 K linearly follows the disappearance of the volume fraction of the ferromagnetic state. We further show that the competition of these magnetic phases is tunable through applying either an external magnetic field or hydrostatic pressure. Our results taken together suggest the thermal and quantum tuning of Berry curvature field via external tuning of magnetic order. Our study shows that Co_3Sn_2S_2 is a rare example where the magnetic competition drives the thermodynamic evolution of the Berry curvature field, thus tuning its topological state.
156 - Hang Li , Bei Ding , Jie Chen 2020
We report the observation of a large anisotropic topological Hall effect (THE) in the hexagonal non-collinear magnet Fe5Sn3 single crystals. It is found that the sign of the topological Hall resistivity is negative when a magnetic field H perpendicular to the bc-plane (Hperp bc-plane), however, it changes form negative to positive when H parallel to the c-axis (Hparallel c-axis). The value of topological Hall resistivity increased with the increasing temperature and reached approximately -2.12 muOmega cm (Hperp bc-plane) and 0.5 muOmega cm (Hparallel c-axis) at 350 K, respectively. Quantitative analyses of the measured data suggest that the observed anisotropic THE may originate from the opposite scalar spin chirality induced by the magnetic fields perpendicular and parallel to the c-axis, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا