Do you want to publish a course? Click here

Active Ensemble Deep Learning for Polarimetric Synthetic Aperture Radar Image Classification

233   0   0.0 ( 0 )
 Added by Shengjie Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Although deep learning has achieved great success in image classification tasks, its performance is subject to the quantity and quality of training samples. For classification of polarimetric synthetic aperture radar (PolSAR) images, it is nearly impossible to annotate the images from visual interpretation. Therefore, it is urgent for remote sensing scientists to develop new techniques for PolSAR image classification under the condition of very few training samples. In this letter, we take the advantage of active learning and propose active ensemble deep learning (AEDL) for PolSAR image classification. We first show that only 35% of the predicted labels of a deep learning models snapshots near its convergence were exactly the same. The disagreement between snapshots is non-negligible. From the perspective of multiview learning, the snapshots together serve as a good committee to evaluate the importance of unlabeled instances. Using the snapshots committee to give out the informativeness of unlabeled data, the proposed AEDL achieved better performance on two real PolSAR images compared with standard active learning strategies. It achieved the same classification accuracy with only 86% and 55% of the training samples compared with breaking ties active learning and random selection for the Flevoland dataset.



rate research

Read More

117 - Andrew Rittenbach 2020
Synthetic Aperture Radar (SAR) imaging systems operate by emitting radar signals from a moving object, such as a satellite, towards the target of interest. Reflected radar echoes are received and later used by image formation algorithms to form a SAR image. There is great interest in using SAR images in computer vision tasks such as classification or automatic target recognition. Today, however, SAR applications consist of multiple operations: image formation followed by image processing. In this work, we train a deep neural network that performs both the image formation and image processing tasks, integrating the SAR processing pipeline. Results show that our integrated pipeline can output accurately classified SAR imagery with image quality comparable to those formed using a traditional algorithm. We believe that this work is the first demonstration of an integrated neural network based SAR processing pipeline using real data.
Many researches have been carried out for change detection using temporal SAR images. In this paper an algorithm for change detection using SAR videos has been proposed. There are various challenges related to SAR videos such as high level of speckle noise, rotation of SAR image frames of the video around a particular axis due to the circular movement of airborne vehicle, non-uniform back scattering of SAR pulses. Hence conventional change detection algorithms used for optical videos and SAR temporal images cannot be directly utilized for SAR videos. We propose an algorithm which is a combination of optical flow calculation using Lucas Kanade (LK) method and blob detection. The developed method follows a four steps approach: image filtering and enhancement, applying LK method, blob analysis and combining LK method with blob analysis. The performance of the developed approach was tested on SAR videos available on Sandia National Laboratories website and SAR videos generated by a SAR simulator.
CNN visualization and interpretation methods, like class-activation maps (CAMs), are typically used to highlight the image regions linked to class predictions. These models allow to simultaneously classify images and extract class-dependent saliency maps, without the need for costly pixel-level annotations. However, they typically yield segmentations with high false-positive rates and, therefore, coarse visualisations, more so when processing challenging images, as encountered in histology. To mitigate this issue, we propose an active learning (AL) framework, which progressively integrates pixel-level annotations during training. Given training data with global image-level labels, our deep weakly-supervised learning model jointly performs supervised image-level classification and active learning for segmentation, integrating pixel annotations by an oracle. Unlike standard AL methods that focus on sample selection, we also leverage large numbers of unlabeled images via pseudo-segmentations (i.e., self-learning at the pixel level), and integrate them with the oracle-annotated samples during training. We report extensive experiments over two challenging benchmarks -- high-resolution medical images (histology GlaS data for colon cancer) and natural images (CUB-200-2011 for bird species). Our results indicate that, by simply using random sample selection, the proposed approach can significantly outperform state-of the-art CAMs and AL methods, with an identical oracle-supervision budget. Our code is publicly available.
In this paper, we present a novel deep metric learning method to tackle the multi-label image classification problem. In order to better learn the correlations among images features, as well as labels, we attempt to explore a latent space, where images and labels are embedded via two unique deep neural networks, respectively. To capture the relationships between image features and labels, we aim to learn a emph{two-way} deep distance metric over the embedding space from two different views, i.e., the distance between one image and its labels is not only smaller than those distances between the image and its labels nearest neighbors, but also smaller than the distances between the labels and other images corresponding to the labels nearest neighbors. Moreover, a reconstruction module for recovering correct labels is incorporated into the whole framework as a regularization term, such that the label embedding space is more representative. Our model can be trained in an end-to-end manner. Experimental results on publicly available image datasets corroborate the efficacy of our method compared with the state-of-the-arts.
Few-shot image classification is a challenging problem which aims to achieve the human level of recognition based only on a small number of images. Deep learning algorithms such as meta-learning, transfer learning, and metric learning have been employed recently and achieved the state-of-the-art performance. In this survey, we review representative deep metric learning methods for few-shot classification, and categorize them into three groups according to the major problems and novelties they focus on. We conclude this review with a discussion on current challenges and future trends in few-shot image classification.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا