Do you want to publish a course? Click here

Deep Metric Learning for Few-Shot Image Classification: A Selective Review

195   0   0.0 ( 0 )
 Added by Xiaochen Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Few-shot image classification is a challenging problem which aims to achieve the human level of recognition based only on a small number of images. Deep learning algorithms such as meta-learning, transfer learning, and metric learning have been employed recently and achieved the state-of-the-art performance. In this survey, we review representative deep metric learning methods for few-shot classification, and categorize them into three groups according to the major problems and novelties they focus on. We conclude this review with a discussion on current challenges and future trends in few-shot image classification.



rate research

Read More

Few-shot learning is devoted to training a model on few samples. Recently, the method based on local descriptor metric-learning has achieved great performance. Most of these approaches learn a model based on a pixel-level metric. However, such works can only measure the relations between them on a single level, which is not comprehensive and effective. We argue that if query images can simultaneously be well classified via three distinct level similarity metrics, the query images within a class can be more tightly distributed in a smaller feature space, generating more discriminative feature maps. Motivated by this, we propose a novel Multi-level Metric Learning (MML) method for few-shot learning, which not only calculates the pixel-level similarity but also considers the similarity of part-level features and the similarity of distributions. First, we use a feature extractor to get the feature maps of images. Second, a multi-level metric module is proposed to calculate the part-level, pixel-level, and distribution-level similarities simultaneously. Specifically, the distribution-level similarity metric calculates the distribution distance (i.e., Wasserstein distance, Kullback-Leibler divergence) between query images and the support set, the pixel-level, and the part-level metric calculates the pixel-level and part-level similarities respectively. Finally, the fusion layer fuses three kinds of relation scores to obtain the final similarity score. Extensive experiments on popular benchmarks demonstrate that the MML method significantly outperforms the current state-of-the-art methods.
In this paper, we propose a subspace representation learning (SRL) framework to tackle few-shot image classification tasks. It exploits a subspace in local CNN feature space to represent an image, and measures the similarity between two images according to a weighted subspace distance (WSD). When K images are available for each class, we develop two types of template subspaces to aggregate K-shot information: the prototypical subspace (PS) and the discriminative subspace (DS). Based on the SRL framework, we extend metric learning based techniques from vector to subspace representation. While most previous works adopted global vector representation, using subspace representation can effectively preserve the spatial structure, and diversity within an image. We demonstrate the effectiveness of the SRL framework on three public benchmark datasets: MiniImageNet, TieredImageNet and Caltech-UCSD Birds-200-2011 (CUB), and the experimental results illustrate competitive/superior performance of our method compared to the previous state-of-the-art.
Few-shot Learning has been studied to mimic human visual capabilities and learn effective models without the need of exhaustive human annotation. Even though the idea of meta-learning for adaptation has dominated the few-shot learning methods, how to train a feature extractor is still a challenge. In this paper, we focus on the design of training strategy to obtain an elemental representation such that the prototype of each novel class can be estimated from a few labeled samples. We propose a two-stage training scheme, Partner-Assisted Learning (PAL), which first trains a partner encoder to model pair-wise similarities and extract features serving as soft-anchors, and then trains a main encoder by aligning its outputs with soft-anchors while attempting to maximize classification performance. Two alignment constraints from logit-level and feature-level are designed individually. For each few-shot task, we perform prototype classification. Our method consistently outperforms the state-of-the-art method on four benchmarks. Detailed ablation studies of PAL are provided to justify the selection of each component involved in training.
In this paper, we present a novel deep metric learning method to tackle the multi-label image classification problem. In order to better learn the correlations among images features, as well as labels, we attempt to explore a latent space, where images and labels are embedded via two unique deep neural networks, respectively. To capture the relationships between image features and labels, we aim to learn a emph{two-way} deep distance metric over the embedding space from two different views, i.e., the distance between one image and its labels is not only smaller than those distances between the image and its labels nearest neighbors, but also smaller than the distances between the labels and other images corresponding to the labels nearest neighbors. Moreover, a reconstruction module for recovering correct labels is incorporated into the whole framework as a regularization term, such that the label embedding space is more representative. Our model can be trained in an end-to-end manner. Experimental results on publicly available image datasets corroborate the efficacy of our method compared with the state-of-the-arts.
Few-shot image classification (FSIC), which requires a model to recognize new categories via learning from few images of these categories, has attracted lots of attention. Recently, meta-learning based methods have been shown as a promising direction for FSIC. Commonly, they train a meta-learner (meta-learning model) to learn easy fine-tuning weight, and when solving an FSIC task, the meta-learner efficiently fine-tunes itself to a task-specific model by updating itself on few images of the task. In this paper, we propose a novel meta-learning based layer-wise adaptive updating (LWAU) method for FSIC. LWAU is inspired by an interesting finding that compared with common deep models, the meta-learner pays much more attention to update its top layer when learning from few images. According to this finding, we assume that the meta-learner may greatly prefer updating its top layer to updating its bottom layers for better FSIC performance. Therefore, in LWAU, the meta-learner is trained to learn not only the easy fine-tuning model but also its favorite layer-wise adaptive updating rule to improve its learning efficiency. Extensive experiments show that with the layer-wise adaptive updating rule, the proposed LWAU: 1) outperforms existing few-shot classification methods with a clear margin; 2) learns from few images more efficiently by at least 5 times than existing meta-learners when solving FSIC.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا