Do you want to publish a course? Click here

Polarization-dependent laser resonance ionization of beryllium

81   0   0.0 ( 0 )
 Added by Ruohong Li
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using TRIUMFs off-line laser ion source test stand with a system of tunable titanium sapphire lasers, the polarization dependence of laser resonance ionization has been investigated using beryllium. A significant polarization dependence was observed for the excitation path $^1$S$_0$$rightarrow$$^1$P$^{circ}_1$$rightarrow$$^1$S$_0$, which are typical transitions for alkaline and alkaline-like elements. This polarization dependence was further verified on Be radioactive isotopes at TRIUMFs isotope separator and accelerator facility (ISAC). Laser polarization was proven to be an important parameter in operating resonance ionization laser ion sources (RILIS). The polarization spectroscopy was preformed off-line both on the 2p$^2$ $^1$S$_0$ autoionizing (AI) state and high-$n$ Rydberg states of the $2sns$ $^1S_0$ and $2snd$ $^1D_2$ series. The energy of the 2p$^2$ $^1$S$_0$ AI state and ionization potential (IP) of beryllium were extracted as 76167(6)~cm$^{-1}$ and 75192.59(3)~cm$^{-1}$. Polarization spectroscopy can be used to determine the $J$ values of newly found states in in-source spectroscopy of the complex/radioactive alkaline-like elements such as Ra, Sm, Yb, Pu and No.



rate research

Read More

257 - R. Li , Y. Liu , M. Mostamand 2020
Photoionization spectra of Se have been studied by step-wise resonance laser ionization. The Rydberg series 4s$^2$4p$^3$($^4$S)np $^3$P$_{0,1,2}$ and 4s$^2$4p$^3$($^4$S)np $^5$P$_{1,2,3}$ were measured via different excitation schemes. Using the Rydberg series 4s$^2$4p$^3$($^4$S)np $^3$P$_2$ with n=15-33, the ionization potential of Se was determined with improved precision to 76658.15(2)$_{stat}$(4)$_{sys}$ cm$^{-1}$, which resolved the discrepancy in previous literatures. Autoionizing (AI) spectra between the IP and two neighboring converging limits of the Se ionic states 4s$^2$4p$^3$($^2$D$_{3/2}$) and 4s$^2$4p$^3$($^2$D$_{5/2}$) were obtained. In total eight AI Rydberg series have been observed, measured and assigned.
The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set of electron scattering data for neutral beryllium, which should be sufficient for most modeling applications.
247 - R. Li , J. Lassen , Z. P. Zhong 2017
Multi-step laser resonance ionization spectroscopy of lutetium (Lu) has been performed at TRIUMFs off-line laser ion source test stand. The even-parity Rydberg series $6s^2nd$ $^2D_{3/2}$, $6s^2nd$ $^2D_{5/2}$ and $6s^2ns$ $^2S_{1/2}$ were observed converging to the 6s$^2$ ionization potential. The experimental results has been compared to previous work. 51 levels of Rydberg series $6s^2nd$ $^2D_{5/2}$ and 52 levels of Rydberg series $6s^2ns$ $^2S_{1/2}$ were reported new. Additionally six even-parity autoionization (AI) series converging to Lu ionic states $5d6s$ $^3D_1$ and $5d6s$ $^3D_2$ were observed. The level energies of these AI states were measured. The configurations of the AI states were assigned by relativistic multichannel theory (RMCT) within the framework of multichannel quantum defect theory (MQDT).
The ionization probability of N$_2$, O$_2$, and CO$_2$ in intense laser fields is studied theoretically as a function of the alignment angle by solving the time-dependent Schrodinger equation numerically assuming only the single-active-electron approximation. The results are compared to recent experimental data [D.~Pavi{v{c}}i{c} et al., Phys.,Rev.,Lett. {bf 98}, 243001 (2007)] and good agreement is found for N$_2$ and O$_2$. For CO$_2$ a possible explanation is provided for the failure of simplified single-active-electron models to reproduce the experimentally observed narrow ionization distribution. It is based on a field-induced coherent core-trapping effect.
113 - X. L. Xu 2015
Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Due to the phase dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three dimensional effects limit the wave number of the modulation to between $> 2k_0$ and about $5k_0$, where $k_0$ is the wavenumber of the injection laser. Such a nano-scale bunched beam can be diagnosed through coherent transition radiation upon its exit from the plasma and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا