Multi-step laser resonance ionization spectroscopy of lutetium (Lu) has been performed at TRIUMFs off-line laser ion source test stand. The even-parity Rydberg series $6s^2nd$ $^2D_{3/2}$, $6s^2nd$ $^2D_{5/2}$ and $6s^2ns$ $^2S_{1/2}$ were observed converging to the 6s$^2$ ionization potential. The experimental results has been compared to previous work. 51 levels of Rydberg series $6s^2nd$ $^2D_{5/2}$ and 52 levels of Rydberg series $6s^2ns$ $^2S_{1/2}$ were reported new. Additionally six even-parity autoionization (AI) series converging to Lu ionic states $5d6s$ $^3D_1$ and $5d6s$ $^3D_2$ were observed. The level energies of these AI states were measured. The configurations of the AI states were assigned by relativistic multichannel theory (RMCT) within the framework of multichannel quantum defect theory (MQDT).
New measurements of high-lying even parity $6sns, {}^1 ! S_0$ and $6snd,{}^{3,1}!D_2$ levels of neutral $^{174}$Yb are presented in this paper. Spectroscopy is performed by a two-step laser excitation from the ground state $4f^{14}6s^2 , {}^1 ! S_0$, and the Rydberg levels are detected by using the field ionization method. Additional two-photon microwave spectroscopy is used to improve the relative energy accuracy where possible. The spectroscopic measurements are complemented by a multichannel quantum defect theory (MQDT) analysis for the J=0 and the two-coupled J=2 even parity series. We compare our results with the previous analysis of Aymar {it{et al}} cite{Aymar_1980} and analyze the observed differences. From the new MQDT models, a revised value for the first ionization limit $I_{6s}=50443.07041(25)$ cm$^{-1}$ is proposed.
Photoionization spectra of Se have been studied by step-wise resonance laser ionization. The Rydberg series 4s$^2$4p$^3$($^4$S)np $^3$P$_{0,1,2}$ and 4s$^2$4p$^3$($^4$S)np $^5$P$_{1,2,3}$ were measured via different excitation schemes. Using the Rydberg series 4s$^2$4p$^3$($^4$S)np $^3$P$_2$ with n=15-33, the ionization potential of Se was determined with improved precision to 76658.15(2)$_{stat}$(4)$_{sys}$ cm$^{-1}$, which resolved the discrepancy in previous literatures. Autoionizing (AI) spectra between the IP and two neighboring converging limits of the Se ionic states 4s$^2$4p$^3$($^2$D$_{3/2}$) and 4s$^2$4p$^3$($^2$D$_{5/2}$) were obtained. In total eight AI Rydberg series have been observed, measured and assigned.
This work reports on the application of a novel electric field-ionization setup for high-resolution laser spectroscopy measurements on bunched fast atomic beams in a collinear geometry. In combination with multi-step resonant excitation to Rydberg states using pulsed lasers, the field ionization technique demonstrates increased sensitivity for isotope separation and measurement of atomic parameters over non-resonant laser ionization methods. The setup was tested at the Collinear Resonance Ionization Spectroscopy experiment at ISOLDE-CERN to perform high-resolution measurements of transitions in the indium atom from the 5s$^2$5d~$^2$D$_{5/2}$ and 5s$^2$5d~$^2$D$_{3/2}$ states to 5s$^2$($n$)p~$^2$P and 5s$^2$($n$)f~$^2$F Rydberg states, up to a principal quantum number of $n$ = 72. The extracted Rydberg level energies were used to re-evaluate the ionization potential of the indium atom to be 46670.1055(21) cm$^{-1}$. The nuclear magnetic dipole and nuclear electric quadrupole hyperfine structure constants and level isotope shifts of the 5s$^2$5d~$^2$D$_{5/2}$ and 5s$^2$5d~$^2$D$_{3/2}$ states were determined for $^{113,115}$In. The results are compared to calculations using relativistic coupled-cluster theory. A good agreement is found with the ionization potential and isotope shifts, while disagreement of hyperfine structure constants indicates an increased importance of electron correlations in these excited atomic states. With the aim of further increasing the detection sensitivity for measurements on exotic isotopes, a systematic study of the field-ionization arrangement implemented in the work was performed and an improved design was simulated and is presented. The improved design offers increased background suppression independent of the distance from field ionization to ion detection.
Using TRIUMFs off-line laser ion source test stand with a system of tunable titanium sapphire lasers, the polarization dependence of laser resonance ionization has been investigated using beryllium. A significant polarization dependence was observed for the excitation path $^1$S$_0$$rightarrow$$^1$P$^{circ}_1$$rightarrow$$^1$S$_0$, which are typical transitions for alkaline and alkaline-like elements. This polarization dependence was further verified on Be radioactive isotopes at TRIUMFs isotope separator and accelerator facility (ISAC). Laser polarization was proven to be an important parameter in operating resonance ionization laser ion sources (RILIS). The polarization spectroscopy was preformed off-line both on the 2p$^2$ $^1$S$_0$ autoionizing (AI) state and high-$n$ Rydberg states of the $2sns$ $^1S_0$ and $2snd$ $^1D_2$ series. The energy of the 2p$^2$ $^1$S$_0$ AI state and ionization potential (IP) of beryllium were extracted as 76167(6)~cm$^{-1}$ and 75192.59(3)~cm$^{-1}$. Polarization spectroscopy can be used to determine the $J$ values of newly found states in in-source spectroscopy of the complex/radioactive alkaline-like elements such as Ra, Sm, Yb, Pu and No.
Light-induced states are commonly observed in the photoionization spectra of laser-dressed atoms. The properties of autoionizing polaritons, entangled states of light and Auger resonances, however, are largely unexplored. We employ attosecond transient-absorption spectroscopy to study the evolution of autoionizing states in argon, dressed by a tunable femtosecond laser pulse. The avoided crossings between the $3s^{-1}4p$ and several light-induced states indicates the formation of polariton multiplets. We measure a controllable stabilization of the polaritons against ionization, in excellent agreement with emph{ab initio} theory. Using an extension of the Jaynes-Cummings model to autoionizing states, we show that this stabilization is due to the destructive interference between the Auger decay and the radiative ionization of the polaritonic components. These results give new insights into the optical control of electronic structure in the continuum, and unlock the door to applications of autoionizing polaritons in poly-electronic systems.
R. Li
,J. Lassen
,Z. P. Zhong
.
(2017)
.
"Study of even-parity Rydberg and autoionizing states of lutetium by laser resonance ionization spectroscopy"
.
Ruohong Li
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا