Do you want to publish a course? Click here

WKB estimate of bilayer graphenes magic twist angles

131   0   0.0 ( 0 )
 Added by Yafei Ren
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene bilayers exhibit zero-energy flat bands at a discrete series of magic twist angles. In the absence of intra-sublattice inter-layer hopping, zero-energy states satisfy a Dirac equation with a non-abelian SU(2) gauge potential that cannot be diagonalized globally. We develop a semiclassical WKB approximation scheme for this Dirac equation by introducing a dimensionless Plancks constant proportional to the twist angle, solving the linearized Dirac equation around AB and BA turning points, and connecting Airy function solutions via bulk WKB wavefunctions. We find zero energy solutions at a discrete set of values of the dimensionless Plancks constant, which we obtain analytically. Our analytic flat band twist angles correspond closely to those determined numerically in previous work.

rate research

Read More

Twisted bilayer graphene (TBG) hosts nearly flat bands with narrow bandwidths of a few meV at certain {em magic} twist angles. Here we show that in twisted gapped Dirac material bilayers, or massive twisted bilayer graphenes (MTBG), isolated nearly flat bands below a threshold bandwidth $W_c$ are expected for continuous small twist angles up to a critical $theta_c$ depending on the flatness of the original bands and the interlayer coupling strength. Narrow bandwidths of $W lesssim $30 meV are expected for $theta lesssim 3^{circ} $ for twisted Dirac materials with intrinsic gaps of $sim 2$ eV that finds realization in monolayers of gapped transition metal dichalcogenides (TMDC), silicon carbide (SiC) among others, and even narrower bandwidths in hexagonal boron nitride (BN) whose gaps are $sim 5$ eV, while twisted graphene systems with smaller gaps of a few tens of meV, e.g. due to alignment with hexagonal boron nitride, show vestiges of the magic angles behavior in the bandwidth evolution. The phase diagram of finite valley Chern numbers of the isolated moire bands expands with increasing difference between the sublattice selective interlayer tunneling parameters. The valley contrasting circular dichroism for interband optical transitions is constructive near $0^{circ}$ and destructive near $60^{circ}$ alignments and can be tuned through electric field and gate driven polarization of the mini-valleys. Combining massive Dirac materials with various intrinsic gaps, Fermi velocities, interlayer tunneling strengths suggests optimistic prospects of increasing $theta_c$ and achieving correlated states with large $U/W$ effective interaction versus bandwidth ratios.
Van der Waals layered materials with well-defined twist angles between the crystal lattices of individual layers have attracted increasing attention due to the emergence of unexpected material properties. As many properties critically depend on the exact twist angle and its spatial homogeneity, there is a need for a fast and non-invasive characterization technique of the local twist angle, to be applied preferably right after stacking. We demonstrate that confocal Raman spectroscopy can be utilized to spatially map the twist angle in stacked bilayer graphene with an angle resolution of 0.01{deg} for angles between 6.5{deg} and 8{deg} when using a green excitation laser. The twist angles can directly be extracted from the moire superlattice-activated Raman scattering process of the transverse acoustic (TA) phonon mode. Furthermore, we show that the width of the TA Raman peak contains valuable information on spatial twist-angle variations on length scales below the laser spot size of ~ 500 nm.
Emergent quantum phases driven by electronic interactions can manifest in materials with narrowly dispersing, i.e. flat, energy bands. Recently, flat bands have been realized in a variety of graphene-based heterostructures using the tuning parameters of twist angle, layer stacking and pressure, and resulting in correlated insulator and superconducting states. Here we report the experimental observation of similar correlated phenomena in twisted bilayer tungsten diselenide (tWSe2), a semiconducting transition metal dichalcogenide (TMD). Unlike twisted bilayer graphene where the flat band appears only within a narrow range around a magic angle, we observe correlated states over a continuum of angles, spanning 4 degree to 5.1 degree. A Mott-like insulator appears at half band filling that can be sensitively tuned with displacement field. Hall measurements supported by ab initio calculations suggest that the strength of the insulator is driven by the density of states at half filling, consistent with a 2D Hubbard model in a regime of moderate interactions. At 5.1 degree twist, we observe evidence of superconductivity upon doping away from half filling, reaching zero resistivity around 3 K. Our results establish twisted bilayer TMDs as a model system to study interaction-driven phenomena in flat bands with dynamically tunable interactions.
96 - Yao Wang , Yi-Jun Chang , Jun Gao 2019
Graphene, a one-layer honeycomb lattice of carbon atoms, exhibits unconventional phenomena and attracts much interest since its discovery. Recently, an unexpected Mott-like insulator state induced by moire pattern and a superconducting state are observed in magic-angle-twisted bilayer graphene, especially, without correlations between electrons, which gives more hints for the understanding and investigation of strongly correlated phenomena. The photon as boson, behaving differently with fermion, can also retrieve the unconventional phenomena of graphene, such as the bearded edge state which is even never been observed in graphene due to the unstability. Here, we present a direct observation of magic angle and wall state in twisted bilayer photonic graphene. We successfully observe the strong localization and rapid diffusion of photon at the regions with AA and AB stacking order around the magic angle, respectively. Most importantly, we find a wall state showing the photon distribution distinctly separate at the regions with AA and AB/BA stacking order in the lowest-energy band. The mechanism underlying the wall states may help to understand the existence of both Mott-like insulating state and superconducting state in magic-angle twisted bilayer graphene. The accessibility of magic angle in twisted bilayer photonic graphene adds the boson behavior into graphene superlattice and the observation of wall state will also deep the understanding of matter.
Twisting two layers into a magic angle (MA) of ~1.1{deg} is found essential to create low energy flat bands and the resulting correlated insulating, superconducting, and magnetic phases in twisted bilayer graphene (TBG). While most of previous works focus on revealing these emergent states in MA-TBG, a study of the twist angle dependence, which helps to map an evolution of these phases, is yet less explored. Here, we report a magneto-transport study on one non-magic angle TBG device, whose twist angle {theta} changes from 1.25{deg} at one end to 1.43{deg} at the other. For {theta}=1.25{deg}, we observe an emergence of topological insulating states at hole side with a sequence of Chern number |C|=4-|v|, where v is the number of electrons (holes) in moire unite cell. When {theta}>1.25{deg}, the Chern insulator from flat band disappears and evolves into fractal Hofstadter butterfly quantum Hall insulator where magnetic flux in one moire unite cell matters. Our observations will stimulate further theoretical and experimental investigations on the relationship between electron interactions and non-trivial band topology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا