Do you want to publish a course? Click here

Emergence of Chern insulating states in non-Magic angle twisted bilayer graphene

116   0   0.0 ( 0 )
 Added by Wei Yang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Twisting two layers into a magic angle (MA) of ~1.1{deg} is found essential to create low energy flat bands and the resulting correlated insulating, superconducting, and magnetic phases in twisted bilayer graphene (TBG). While most of previous works focus on revealing these emergent states in MA-TBG, a study of the twist angle dependence, which helps to map an evolution of these phases, is yet less explored. Here, we report a magneto-transport study on one non-magic angle TBG device, whose twist angle {theta} changes from 1.25{deg} at one end to 1.43{deg} at the other. For {theta}=1.25{deg}, we observe an emergence of topological insulating states at hole side with a sequence of Chern number |C|=4-|v|, where v is the number of electrons (holes) in moire unite cell. When {theta}>1.25{deg}, the Chern insulator from flat band disappears and evolves into fractal Hofstadter butterfly quantum Hall insulator where magnetic flux in one moire unite cell matters. Our observations will stimulate further theoretical and experimental investigations on the relationship between electron interactions and non-trivial band topology.



rate research

Read More

Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue toward manipulating non-abelian excitations. Early theoretical studies have predicted their existence in systems with energetically flat Chern bands and highlighted the critical role of a particular quantum band geometry. Thus far, however, FCI states have only been observed in Bernal-stacked bilayer graphene aligned with hexagonal boron nitride (BLG/hBN), in which a very large magnetic field is responsible for the existence of the Chern bands, precluding the realization of FCIs at zero field and limiting its potential for applications. By contrast, magic angle twisted bilayer graphene (MATBG) supports flat Chern bands at zero magnetic field, and therefore offers a promising route toward stabilizing zero-field FCIs. Here we report the observation of eight FCI states at low magnetic field in MATBG enabled by high-resolution local compressibility measurements. The first of these states emerge at 5 T, and their appearance is accompanied by the simultaneous disappearance of nearby topologically-trivial charge density wave states. Unlike the BLG/hBN platform, we demonstrate that the principal role of the weak magnetic field here is merely to redistribute the Berry curvature of the native Chern bands and thereby realize a quantum band geometry favorable for the emergence of FCIs. Our findings strongly suggest that FCIs may be realized at zero magnetic field and pave the way for the exploration and manipulation of anyonic excitations in moire systems with native flat Chern bands.
Interactions among electrons and the topology of their energy bands can create novel quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances where topological phases emerge only as a result of strong interactions are rare, and mostly limited to those realized in the presence of intense magnetic fields. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for new strongly correlated topological phases. Here we introduce a novel local spectroscopic technique using a scanning tunneling microscope (STM) to detect a sequence of topological insulators in MATBG with Chern numbers C = $pm$ 1, $pm$ 2, $pm$ 3, which form near $ u$ = $pm$ 3, $pm$ 2, $pm$ 1 electrons per moire unit cell respectively, and are stabilized by the application of modest magnetic fields. One of the phases detected here (C = +1) has been previously observed when the sublattice symmetry of MATBG was intentionally broken by hexagonal boron nitride (hBN) substrates, with interactions playing a secondary role. We demonstrate that strong electron-electron interactions alone can produce not only the previously observed phase, but also new and unexpected Chern insulating phases in MATBG. The full sequence of phases we observed can be understood by postulating that strong correlations favor breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moire systems beyond those anticipated from weakly interacting models.
The emergence of flat bands and correlated behaviors in magic angle twisted bilayer graphene (tBLG) has sparked tremendous interest, though many aspects of the system are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of approximately 0.93, which is smaller than the magic angle by 15%. At an electron concentration of +/-5 electrons per moire unit cell, we observe a narrow resistance peak with an activation energy gap of approximately 0.1 meV, indicating the existence of an additional correlated insulating state. This is consistent with theory predicting the presence of a high-energy band with an energetically flat dispersion. At a doping of +/-12 electrons per moire unit cell we observe a resistance peak due to the presence of Dirac points in the spectrum. Our results reveal that the magic range of tBLG is in fact larger than what is previously expected, and provide a wealth of new information to help decipher the strongly correlated phenomena observed in tBLG.
The interplay between strong electron-electron interactions and band topology can lead to novel electronic states that spontaneously break symmetries. The discovery of flat bands in magic-angle twisted bilayer graphene (MATBG) with nontrivial topology has provided a unique platform in which to search for new symmetry-broken phases. Recent scanning tunneling microscopy and transport experiments have revealed a sequence of topological insulating phases in MATBG with Chern numbers $C=pm 3, , pm 2, , pm 1$ near moire band filling factors $ u = pm 1, , pm 2, , pm 3$, corresponding to a simple pattern of flavor-symmetry-breaking Chern insulators. Here, we report high-resolution local compressibility measurements of MATBG with a scanning single electron transistor that reveal a new sequence of incompressible states with unexpected Chern numbers observed down to zero magnetic field. We find that the Chern numbers for eight of the observed incompressible states are incompatible with the simple picture in which the $C= pm 1$ bands are sequentially filled. We show that the emergence of these unusual incompressible phases can be understood as a consequence of broken translation symmetry that doubles the moire unit cell and splits each $C=pm 1$ band into a $C=pm 1$ band and a $C=0$ band. Our findings significantly expand the known phase diagram of MATBG, and shed light onto the origin of the close competition between different correlated phases in the system.
96 - Yao Wang , Yi-Jun Chang , Jun Gao 2019
Graphene, a one-layer honeycomb lattice of carbon atoms, exhibits unconventional phenomena and attracts much interest since its discovery. Recently, an unexpected Mott-like insulator state induced by moire pattern and a superconducting state are observed in magic-angle-twisted bilayer graphene, especially, without correlations between electrons, which gives more hints for the understanding and investigation of strongly correlated phenomena. The photon as boson, behaving differently with fermion, can also retrieve the unconventional phenomena of graphene, such as the bearded edge state which is even never been observed in graphene due to the unstability. Here, we present a direct observation of magic angle and wall state in twisted bilayer photonic graphene. We successfully observe the strong localization and rapid diffusion of photon at the regions with AA and AB stacking order around the magic angle, respectively. Most importantly, we find a wall state showing the photon distribution distinctly separate at the regions with AA and AB/BA stacking order in the lowest-energy band. The mechanism underlying the wall states may help to understand the existence of both Mott-like insulating state and superconducting state in magic-angle twisted bilayer graphene. The accessibility of magic angle in twisted bilayer photonic graphene adds the boson behavior into graphene superlattice and the observation of wall state will also deep the understanding of matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا