Do you want to publish a course? Click here

A Blind Beam Tracking Scheme for Millimeter Wave Systems

300   0   0.0 ( 0 )
 Added by Steve Blandino
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Millimeter-wave is one of the technologies powering the new generation of wireless communication systems. To compensate the high path-loss, millimeter-wave devices need to use highly directional antennas. Consequently, beam misalignment causes strong performance degradation reducing the link throughput or even provoking a complete outage. Conventional solutions, e.g. IEEE 802.11ad, propose the usage of additional training sequences to track beam misalignment. These methods however introduce significant overhead especially in dynamic scenarios. In this paper we propose a beamforming scheme that can reduce this overhead. First, we propose an algorithm to design a codebook suitable for mobile scenarios. Secondly, we propose a blind beam tracking algorithm based on particle filter, which describes the angular position of the devices with a posterior density function constructed by particles. The proposed scheme reduces by more than 80% the overhead caused by additional training sequences.



rate research

Read More

187 - Ke Ma , Dongxuan He , Hancun Sun 2021
Huge overhead of beam training imposes a significant challenge in millimeter-wave (mmWave) wireless communications. To address this issue, in this paper, we propose a wide beam based training approach to calibrate the narrow beam direction according to the channel power leakage. To handle the complex nonlinear properties of the channel power leakage, deep learning is utilized to predict the optimal narrow beam directly. Specifically, three deep learning assisted calibrated beam training schemes are proposed. The first scheme adopts convolution neural network to implement the prediction based on the instantaneous received signals of wide beam training. We also perform the additional narrow beam training based on the predicted probabilities for further beam direction calibrations. However, the first scheme only depends on one wide beam training, which lacks the robustness to noise. To tackle this problem, the second scheme adopts long-short term memory (LSTM) network for tracking the movement of users and calibrating the beam direction according to the received signals of prior beam training, in order to enhance the robustness to noise. To further reduce the overhead of wide beam training, our third scheme, an adaptive beam training strategy, selects partial wide beams to be trained based on the prior received signals. Two criteria, namely, optimal neighboring criterion and maximum probability criterion, are designed for the selection. Furthermore, to handle mobile scenarios, auxiliary LSTM is introduced to calibrate the directions of the selected wide beams more precisely. Simulation results demonstrate that our proposed schemes achieve significantly higher beamforming gain with smaller beam training overhead compared with the conventional and existing deep-learning based counterparts.
Intelligent reflecting surface (IRS) has emerged as a competitive solution to address blockage issues in millimeter wave (mmWave) and Terahertz (THz) communications due to its capability of reshaping wireless transmission environments. Nevertheless, obtaining the channel state information of IRS-assisted systems is quite challenging because of the passive characteristics of the IRS. In this paper, we consider the problem of beam training/alignment for IRS-assisted downlink mmWave/THz systems, where a multi-antenna base station (BS) with a hybrid structure serves a single-antenna user aided by IRS. By exploiting the inherent sparse structure of the BS-IRS-user cascade channel, the beam training problem is formulated as a joint sparse sensing and phaseless estimation problem, which involves devising a sparse sensing matrix and developing an efficient estimation algorithm to identify the best beam alignment from compressive phaseless measurements. Theoretical analysis reveals that the proposed method can identify the best alignment with only a modest amount of training overhead. Simulation results show that, for both line-of-sight (LOS) and NLOS scenarios, the proposed method obtains a significant performance improvement over existing state-of-art methods. Notably, it can achieve performance close to that of the exhaustive beam search scheme, while reducing the training overhead by 95%.
Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional to the codebook size. To improve the efficiency of beam tracking, we propose a beam tracking scheme based on the channel fingerprint database, which comprises mappings between statistical beamforming gains and user locations. The scheme tracks user movement by utilizing the trained beam configurations and estimating the gains of beam configurations that are not trained. Simulations show that the proposed scheme achieves significant beamforming performance gains over existing beam tracking schemes.
96 - Rui Sun , Weidong Wang , Li Chen 2021
Millimeter-wave (mmWave) communication systems rely on large-scale antenna arrays to combat large path-loss at mmWave band. Due to hardware characteristics and deployment environments, mmWave large-scale antenna systems are vulnerable to antenna element blockages and failures, which necessitate diagnostic techniques to locate faulty antenna elements for calibration purposes. Current diagnostic techniques require full or partial knowledge of channel state information (CSI), which can be challenging to acquire in the presence of antenna failures. In this letter, we propose a blind diagnostic technique to identify faulty antenna elements in mmWave large-scale antenna systems, which does not require any CSI knowledge. By jointly exploiting the sparsity of mmWave channel and failure pattern, we first formulate the diagnosis problem as a joint sparse recovery problem. Then, the atomic norm is introduced to induce the sparsity of mmWave channel over continuous Fourier dictionary. An efficient algorithm based on alternating direction method of multipliers (ADMM) is proposed to solve the formulated problem. Finally, the performance of the proposed technique is evaluated through numerical simulations.
We consider channel/subspace tracking systems for temporally correlated millimeter wave (e.g., E-band) multiple-input multiple-output (MIMO) channels. Our focus is given to the tracking algorithm in the non-line-of-sight (NLoS) environment, where the transmitter and the receiver are equipped with hybrid analog/digital precoder and combiner, respectively. In the absence of straightforward time-correlated channel model in the millimeter wave MIMO literature, we present a temporal MIMO channel evolution model for NLoS millimeter wave scenarios. Considering that conventional MIMO channel tracking algorithms in microwave bands are not directly applicable, we propose a new channel tracking technique based on sequentially updating the precoder and combiner. Numerical results demonstrate the superior channel tracking ability of the proposed technique over independent sounding approach in the presented channel model and the spatial channel model (SCM) adopted in 3GPP specification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا