Do you want to publish a course? Click here

Mean-Field Approximation to Gaussian-Softmax Integral with Application to Uncertainty Estimation

62   0   0.0 ( 0 )
 Added by Zhiyun Lu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Many methods have been proposed to quantify the predictive uncertainty associated with the outputs of deep neural networks. Among them, ensemble methods often lead to state-of-the-art results, though they require modifications to the training procedures and are computationally costly for both training and inference. In this paper, we propose a new single-model based approach. The main idea is inspired by the observation that we can simulate an ensemble of models by drawing from a Gaussian distribution, with a form similar to those from the asymptotic normality theory, infinitesimal Jackknife, Laplacian approximation to Bayesian neural networks, and trajectories in stochastic gradient descents. However, instead of using each model in the ensemble to predict and then aggregating their predictions, we integrate the Gaussian distribution and the softmax outputs of the neural networks. We use a mean-field approximation formula to compute this analytically intractable integral. The proposed approach has several appealing properties: it functions as an ensemble without requiring multiple models, and it enables closed-form approximate inference using only the first and second moments of the Gaussian. Empirically, the proposed approach performs competitively when compared to state-of-the-art methods, including deep ensembles, temperature scaling, dropout and Bayesian NNs, on standard uncertainty estimation tasks. It also outperforms many methods on out-of-distribution detection.



rate research

Read More

Many fields of science and engineering rely on running simulations with complex and computationally expensive models to understand the involved processes in the system of interest. Nevertheless, the high cost involved hamper reliable and exhaustive simulations. Very often such codes incorporate heuristics that ironically make them less tractable and transparent. This paper introduces an active learning methodology for adaptively constructing surrogate models, i.e. emulators, of such costly computer codes in a multi-output setting. The proposed technique is sequential and adaptive, and is based on the optimization of a suitable acquisition function. It aims to achieve accurate approximations, model tractability, as well as compact and expressive simulated datasets. In order to achieve this, the proposed Active Multi-Output Gaussian Process Emulator (AMOGAPE) combines the predictive capacity of Gaussian Processes (GPs) with the design of an acquisition function that favors sampling in low density and fluctuating regions of the approximation functions. Comparing different acquisition functions, we illustrate the promising performance of the method for the construction of emulators with toy examples, as well as for a widely used remote sensing transfer code.
One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, deep Bayesian neural network suffers from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and distinguishing true positive and false positive predictions, with a comparable generalisation performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.
The economic and banking importance of the small and medium enterprise (SME) sector is well recognized in contemporary society. Business credit loans are very important for the operation of SMEs, and the revenue is a key indicator of credit limit management. Therefore, it is very beneficial to construct a reliable revenue forecasting model. If the uncertainty of an enterprises revenue forecasting can be estimated, a more proper credit limit can be granted. Natural gradient boosting approach, which estimates the uncertainty of prediction by a multi-parameter boosting algorithm based on the natural gradient. However, its original implementation is not easy to scale into big data scenarios, and computationally expensive compared to state-of-the-art tree-based models (such as XGBoost). In this paper, we propose a Scalable Natural Gradient Boosting Machines that is simple to implement, readily parallelizable, interpretable and yields high-quality predictive uncertainty estimates. According to the characteristics of revenue distribution, we derive an uncertainty quantification function. We demonstrate that our method can distinguish between samples that are accurate and inaccurate on revenue forecasting of SMEs. Whats more, interpretability can be naturally obtained from the model, satisfying the financial needs.
The computational cost of training with softmax cross entropy loss grows linearly with the number of classes. For the settings where a large number of classes are involved, a common method to speed up training is to sample a subset of classes and utilize an estimate of the loss gradient based on these classes, known as the sampled softmax method. However, the sampled softmax provides a biased estimate of the gradient unless the samples are drawn from the exact softmax distribution, which is again expensive to compute. Therefore, a widely employed practical approach involves sampling from a simpler distribution in the hope of approximating the exact softmax distribution. In this paper, we develop the first theoretical understanding of the role that different sampling distributions play in determining the quality of sampled softmax. Motivated by our analysis and the work on kernel-based sampling, we propose the Random Fourier Softmax (RF-softmax) method that utilizes the powerful Random Fourier Features to enable more efficient and accurate sampling from an approximate softmax distribution. We show that RF-softmax leads to low bias in estimation in terms of both the full softmax distribution and the full softmax gradient. Furthermore, the cost of RF-softmax scales only logarithmically with the number of classes.
Deep neural network controllers for autonomous driving have recently benefited from significant performance improvements, and have begun deployment in the real world. Prior to their widespread adoption, safety guarantees are needed on the controller behaviour that properly take account of the uncertainty within the model as well as sensor noise. Bayesian neural networks, which assume a prior over the weights, have been shown capable of producing such uncertainty measures, but properties surrounding their safety have not yet been quantified for use in autonomous driving scenarios. In this paper, we develop a framework based on a state-of-the-art simulator for evaluating end-to-end Bayesian controllers. In addition to computing pointwise uncertainty measures that can be computed in real time and with statistical guarantees, we also provide a method for estimating the probability that, given a scenario, the controller keeps the car safe within a finite horizon. We experimentally evaluate the quality of uncertainty computation by several Bayesian inference methods in different scenarios and show how the uncertainty measures can be combined and calibrated for use in collision avoidance. Our results suggest that uncertainty estimates can greatly aid decision making in autonomous driving.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا