Do you want to publish a course? Click here

Large-scale Uncertainty Estimation and Its Application in Revenue Forecast of SMEs

91   0   0.0 ( 0 )
 Added by Zebang Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The economic and banking importance of the small and medium enterprise (SME) sector is well recognized in contemporary society. Business credit loans are very important for the operation of SMEs, and the revenue is a key indicator of credit limit management. Therefore, it is very beneficial to construct a reliable revenue forecasting model. If the uncertainty of an enterprises revenue forecasting can be estimated, a more proper credit limit can be granted. Natural gradient boosting approach, which estimates the uncertainty of prediction by a multi-parameter boosting algorithm based on the natural gradient. However, its original implementation is not easy to scale into big data scenarios, and computationally expensive compared to state-of-the-art tree-based models (such as XGBoost). In this paper, we propose a Scalable Natural Gradient Boosting Machines that is simple to implement, readily parallelizable, interpretable and yields high-quality predictive uncertainty estimates. According to the characteristics of revenue distribution, we derive an uncertainty quantification function. We demonstrate that our method can distinguish between samples that are accurate and inaccurate on revenue forecasting of SMEs. Whats more, interpretability can be naturally obtained from the model, satisfying the financial needs.



rate research

Read More

During the last few decades, online controlled experiments (also known as A/B tests) have been adopted as a golden standard for measuring business improvements in industry. In our company, there are more than a billion users participating in thousands of experiments simultaneously, and with statistical inference and estimations conducted to thousands of online metrics in those experiments routinely, computational costs would become a large concern. In this paper we propose a novel algorithm for estimating the covariance of online metrics, which introduces more flexibility to the trade-off between computational costs and precision in covariance estimation. This covariance estimation method reduces computational cost of metric calculation in large-scale setting, which facilitates further application in both online controlled experiments and adaptive experiments scenarios like variance reduction, continuous monitoring, Bayesian optimization, etc., and it can be easily implemented in engineering practice.
61 - Zhiyun Lu , Eugene Ie , Fei Sha 2020
Many methods have been proposed to quantify the predictive uncertainty associated with the outputs of deep neural networks. Among them, ensemble methods often lead to state-of-the-art results, though they require modifications to the training procedures and are computationally costly for both training and inference. In this paper, we propose a new single-model based approach. The main idea is inspired by the observation that we can simulate an ensemble of models by drawing from a Gaussian distribution, with a form similar to those from the asymptotic normality theory, infinitesimal Jackknife, Laplacian approximation to Bayesian neural networks, and trajectories in stochastic gradient descents. However, instead of using each model in the ensemble to predict and then aggregating their predictions, we integrate the Gaussian distribution and the softmax outputs of the neural networks. We use a mean-field approximation formula to compute this analytically intractable integral. The proposed approach has several appealing properties: it functions as an ensemble without requiring multiple models, and it enables closed-form approximate inference using only the first and second moments of the Gaussian. Empirically, the proposed approach performs competitively when compared to state-of-the-art methods, including deep ensembles, temperature scaling, dropout and Bayesian NNs, on standard uncertainty estimation tasks. It also outperforms many methods on out-of-distribution detection.
Ensemble learning is a standard approach to building machine learning systems that capture complex phenomena in real-world data. An important aspect of these systems is the complete and valid quantification of model uncertainty. We introduce a Bayesian nonparametric ensemble (BNE) approach that augments an existing ensemble model to account for different sources of model uncertainty. BNE augments a models prediction and distribution functions using Bayesian nonparametric machinery. It has a theoretical guarantee in that it robustly estimates the uncertainty patterns in the data distribution, and can decompose its overall predictive uncertainty into distinct components that are due to different sources of noise and error. We show that our method achieves accurate uncertainty estimates under complex observational noise, and illustrate its real-world utility in terms of uncertainty decomposition and model bias detection for an ensemble in predict air pollution exposures in Eastern Massachusetts, USA.
Fast and reliable prediction of riverine flow velocities is important in many applications, including flood risk management. The shallow water equations (SWEs) are commonly used for prediction of the flow velocities. However, accurate and fast prediction with standard SWE solvers is challenging in many cases. Traditional approaches are computationally expensive and require high-resolution riverbed profile measurement ( bathymetry) for accurate predictions. As a result, they are a poor fit in situations where they need to be evaluated repetitively due, for example, to varying boundary condition (BC), or when the bathymetry is not known with certainty. In this work, we propose a two-stage process that tackles these issues. First, using the principal component geostatistical approach (PCGA) we estimate the probability density function of the bathymetry from flow velocity measurements, and then we use multiple machine learning algorithms to obtain a fast solver of the SWEs, given augmented realizations from the posterior bathymetry distribution and the prescribed range of BCs. The first step allows us to predict flow velocities without direct measurement of the bathymetry. Furthermore, the augmentation of the distribution in the second stage allows incorporation of the additional bathymetry information into the flow velocity prediction for improved accuracy and generalization, even if the bathymetry changes over time. Here, we use three solvers, referred to as PCA-DNN (principal component analysis-deep neural network), SE (supervised encoder), and SVE (supervised variational encoder), and validate them on a reach of the Savannah river near Augusta, GA. Our results show that the fast solvers are capable of predicting flow velocities with good accuracy, at a computational cost that is significantly lower than the cost of solving the full boundary value problem with traditional methods.
In reinforcement learning, it is typical to use the empirically observed transitions and rewards to estimate the value of a policy via either model-based or Q-fitting approaches. Although straightforward, these techniques in general yield biased estimates of the true value of the policy. In this work, we investigate the potential for statistical bootstrapping to be used as a way to take these biased estimates and produce calibrated confidence intervals for the true value of the policy. We identify conditions - specifically, sufficient data size and sufficient coverage - under which statistical bootstrapping in this setting is guaranteed to yield correct confidence intervals. In practical situations, these conditions often do not hold, and so we discuss and propose mechanisms that can be employed to mitigate their effects. We evaluate our proposed method and show that it can yield accurate confidence intervals in a variety of conditions, including challenging continuous control environments and small data regimes.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا