No Arabic abstract
In the study of perturbations around black hole configurations, whether an external source can influence the perturbation behavior is an interesting topic to investigate. When the source acts as an initial pulse, it is intuitively acceptable that the existing quasinormal frequencies will remain unchanged. However, the confirmation of such an intuition is not trivial for the rotating black hole, since the eigenvalues in the radial and angular parts of the master equations are coupled. We show that for the rotating black holes, a moderate source term in the master equation in the Laplace s-domain does not modify the quasinormal modes. Furthermore, we generalize our discussions to the case where the external source serves as a driving force. Different from an initial pulse, an external source may further drive the system to experience new perturbation modes. To be specific, novel dissipative singularities might be brought into existence and enrich the pole structure. This is a physically relevant scenario, due to its possible implication in modified gravity. Our arguments are based on exploring the pole structure of the solution in the Laplace s-domain with the presence of the external source. The analytical analyses are verified numerically by solving the inhomogeneous differential equation and extracting the dominant complex frequencies by employing the Prony method.
The rapid advancement of gravitational wave astronomy in recent years has paved the way for the burgeoning development of black hole spectroscopy, which enhances the possibility of testing black holes by their quasinormal modes (QNMs). In this paper, the axial gravitational perturbations and the QNM frequencies of black holes in the hybrid metric-Palatini gravity (HMPG) are investigated. The HMPG theory is characterized by a dynamical scalar degree of freedom and is able to explain the late-time accelerating expansion of the universe without introducing any textit{ad hoc} screening mechanism to preserve the dynamics at the Solar System scale. We obtain the master equation governing the axial gravitational perturbations of the HMPG black holes and calculate the QNM frequencies. Moreover, in the scrutiny of the black holes and their QNMs, we take into account the constraints on the model parameters based on the post-Newtonian analysis, and show how the QNM frequencies of the HMPG black holes would be altered in the observationally consistent range of parameter space.
Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (light ring) of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of specific models than on an actual constraining relationship. We also show, in particular, that a better understanding of the dissociation of the two may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.
Deep conceptual problems associated with classical black holes can be addressed in string theory by the fuzzball paradigm, which provides a microscopic description of a black hole in terms of a thermodynamically large number of regular, horizonless, geometries with much less symmetry than the corresponding black hole. Motivated by the tantalizing possibility to observe quantum gravity signatures near astrophysical compact objects in this scenario, we perform the first $3+1$ numerical simulations of a scalar field propagating on a large class of multicenter geometries with no spatial isometries arising from ${cal N}=2$ four-dimensional supergravity. We identify the prompt response to the perturbation and the ringdown modes associated with the photon sphere, which are similar to the black-hole case, and the appearence of echoes at later time, which is a smoking gun of the absence of a horizon and of the regular interior of these solutions. The response is in agreement with an analytical model based on geodesic motion in these complicated geometries. Our results provide the first numerical evidence for the dynamical linear stability of fuzzballs, and pave the way for an accurate discrimination between fuzzballs and black holes using gravitational-wave spectroscopy.
We consider the equivalence of quasinormal modes and geodesic quantities recently brought back due to the black hole shadow observation by Event Horizon Telescope. Using WKB method we found an analytical relation between the real part of quasinormal frequencies at the eikonal limit and black hole shadow radius. We verify this correspondence with two black hole families in $4$ and $D$ dimensions, respectively.
Quasinormal modes of perturbed black holes have recently gained much interest because of their tight relations with the gravitational wave signals emitted during the post-merger phase of a binary black hole coalescence. One of the intriguing features of these modes is that they respect the no-hair theorem, and hence, they can be used to test black hole space-times and the underlying gravitational theory. In this paper, we exhibit three different aspects of how black hole quasinormal modes could be altered in theories beyond Einstein general relativity. These aspects are the direct alterations of quasinormal modes spectra as compared with those in general relativity, the violation of the geometric correspondence between the high-frequency quasinormal modes and the photon geodesics around the black hole, and the breaking of the isospectrality between the axial and polar gravitational perturbations. Several examples will be provided in each individual case. The prospects and possible challenges associated with future observations will be also discussed.