No Arabic abstract
Quasinormal modes of perturbed black holes have recently gained much interest because of their tight relations with the gravitational wave signals emitted during the post-merger phase of a binary black hole coalescence. One of the intriguing features of these modes is that they respect the no-hair theorem, and hence, they can be used to test black hole space-times and the underlying gravitational theory. In this paper, we exhibit three different aspects of how black hole quasinormal modes could be altered in theories beyond Einstein general relativity. These aspects are the direct alterations of quasinormal modes spectra as compared with those in general relativity, the violation of the geometric correspondence between the high-frequency quasinormal modes and the photon geodesics around the black hole, and the breaking of the isospectrality between the axial and polar gravitational perturbations. Several examples will be provided in each individual case. The prospects and possible challenges associated with future observations will be also discussed.
The rapid advancement of gravitational wave astronomy in recent years has paved the way for the burgeoning development of black hole spectroscopy, which enhances the possibility of testing black holes by their quasinormal modes (QNMs). In this paper, the axial gravitational perturbations and the QNM frequencies of black holes in the hybrid metric-Palatini gravity (HMPG) are investigated. The HMPG theory is characterized by a dynamical scalar degree of freedom and is able to explain the late-time accelerating expansion of the universe without introducing any textit{ad hoc} screening mechanism to preserve the dynamics at the Solar System scale. We obtain the master equation governing the axial gravitational perturbations of the HMPG black holes and calculate the QNM frequencies. Moreover, in the scrutiny of the black holes and their QNMs, we take into account the constraints on the model parameters based on the post-Newtonian analysis, and show how the QNM frequencies of the HMPG black holes would be altered in the observationally consistent range of parameter space.
Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (light ring) of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of specific models than on an actual constraining relationship. We also show, in particular, that a better understanding of the dissociation of the two may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.
Deep conceptual problems associated with classical black holes can be addressed in string theory by the fuzzball paradigm, which provides a microscopic description of a black hole in terms of a thermodynamically large number of regular, horizonless, geometries with much less symmetry than the corresponding black hole. Motivated by the tantalizing possibility to observe quantum gravity signatures near astrophysical compact objects in this scenario, we perform the first $3+1$ numerical simulations of a scalar field propagating on a large class of multicenter geometries with no spatial isometries arising from ${cal N}=2$ four-dimensional supergravity. We identify the prompt response to the perturbation and the ringdown modes associated with the photon sphere, which are similar to the black-hole case, and the appearence of echoes at later time, which is a smoking gun of the absence of a horizon and of the regular interior of these solutions. The response is in agreement with an analytical model based on geodesic motion in these complicated geometries. Our results provide the first numerical evidence for the dynamical linear stability of fuzzballs, and pave the way for an accurate discrimination between fuzzballs and black holes using gravitational-wave spectroscopy.
In this work, we propose the quantum Hall system as a platform for exploring black hole phenomena. By exhibiting deep rooted commonalities between lowest Landau level and spacetime symmetries, we show that features of both quantum Hall and gravitational systems can be elegantly captured by a simple quantum mechanical model, the inverted harmonic oscillator. Through this correspondence, we argue that radiation phenomena in gravitational situations, such as presented by W. G. Unruh and S. Hawking, bears a parallel with saddle-potential scattering of quantum Hall quasiparticles. We also find that scattering by the quantum Hall saddle potential can mimic the signature quasinormal modes in black holes, such as theoretically demonstrated through Gaussian scattering off a Schwarzschild black hole by C. V. Vishveshwara. We propose a realistic quantum Hall point contact setup for probing these temporally decaying modes in quasiparticle tunneling, offering a new mesoscopic parallel for black hole ringdown.
The quasinormal modes (QNMs) of a regular black hole with charge are calculated in the eikonal approximation. In the eikonal limit the QNMs of black hole are determined by the parameters of the unstable circular null geodesics. The behaviors of QNMs are compared with QNMs of Reisner-Nordstr{o}m black hole, it is done by fixing some of the parameters that characterize the black holes and varying another. We observed that the parameter that is related one effective cosmological constant at small distances , determines the behaviors of the QNMs of regular black hole with charge.