Do you want to publish a course? Click here

Searching in the dark: the hunt for the dark photon

122   0   0.0 ( 0 )
 Added by Alessandra Filippi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The existence of Dark Matter (DM) is a well established fact since many decades, thanks to the observation of the effects of its gravitational interaction with the ordinary matter in the Universe. However, our knowledge of the Dark Matter features is still rather scarce. Indeed, one of the biggest quests in fundamental science today is the investigation of Dark Matter nature, from its origin to its composition, and the way its constituents interact with the ordinary matter, apart from gravity. Huge and ambitious efforts have been spent in the last years into its identification, concentrating especially on the search of viable Weakly Interacting Massive Particle candidates. However, no positive results have been achieved so far along this direction. On the other hand, many fascinating new ideas and models for its interpretation have been blooming: among them, an intriguing hypothesis is that the Dark Matter constituents could be neutral under Standard Model interactions, but they could interact through a new, still unknown, force under a hidden charge. This new hidden symmetry would be mediated by a massive gauge boson, the dark photon, which is expected to couple to the Standard Model via a kinetic mixing. The search for such a massive mediator has been pursued with large enthusiasm and dedication in the latest years, as its observation could be within the reach of many already existing experimental facilities, both based on accelerators



rate research

Read More

Low energy antideuteron detection presents a unique channel for indirect detection, targeting dark matter that annihilates into hadrons in a relatively background-free way. Since the idea was first proposed, many WIMP-type models have already been disfavored by direct detection experiments, and current constraints indicate that any thermal relic candidates likely annihilate through some hidden sector process. In this paper, we show that cosmic ray antideuteron detection experiments represent one of the best ways to search for hidden sector thermal relic dark matter, and in particular investigate a vector portal dark matter that annihilates via a massive dark photon. We find that the parameter space with thermal relic annihilation and $m_chi > m_{A} gtrsim 20 , mathrm{GeV}$ is largely unconstrained, and near future antideuteron experiment GAPS will be able to probe models in this space with $m_chi approx m_{A}$ up to masses of $O(100,mathrm{GeV})$. Specifically the dark matter models favored by the textit{Fermi} Galactic center excess is expected to be detected or constrained at the $5(3)-sigma$ level assuming a optimistic (conservative) propagation model.
Dark photons are massive abelian gauge bosons that interact with ordinary photons via a kinetic mixing with the hypercharge field strength tensor. This theory is probed by a variety of different experiments and limits are set on a combination of the dark photon mass and kinetic mixing parameter. These limits can however be strongly modified by the presence of additional heavy degrees of freedom. Using the framework of dark effective field theory, we study how robust are the current experimental bounds when these new states are present. We focus in particular on the possible existence of a dark dipole interaction between the Standard Model leptons and the dark photon. We show that the presence of a dark dipole modifies existing supernov{ae} bounds for cut-off scales up to $mathcal{O}(10 - 100~text{TeV})$. On the other hand, terrestrial experiments, such as LSND and E137, can probe cut-off scales up to $mathcal{O}(3~text{TeV})$. For the latter experiment we highlight that the bound extends down to vanishing kinetic mixing.
We present a search for the e+e- decay of a hypothetical dark photon, also names U vector boson, in inclusive dielectron spectra measured by HADES in the p (3.5 GeV) + p, Nb reactions, as well as the Ar (1.756 GeV/u) + KCl reaction. An upper limit on the kinetic mixing parameter squared epsilon^{2} at 90% CL has been obtained for the mass range M(U) = 0.02 - 0.55 GeV/c2 and is compared with the present world data set. For masses 0.03 - 0.1 GeV/c^2, the limit has been lowered with respect to previous results, allowing now to exclude a large part of the parameter region favoured by the muon g-2 anomaly. Furthermore, an improved upper limit on the branching ratio of 2.3 * 10^{-6} has been set on the helicity-suppressed direct decay of the eta meson, eta-> e+e-, at 90% CL.
We propose an experiment to search for a new gauge boson A in $e^+e^-$ annihilation by means of a positron beam incident on a gas hydrogen target internal to the bypass at the VEPP-3 storage ring. The search method is based on a missing mass spectra in the reaction $e^+e^-rightarrow gamma$ A. It allows observation of the A signal independently of its decay modes and life time. The projected result of this experiment corresponds to an upper limit on the square of the coupling constant $varepsilon^2=3cdot 10^{-8}$ with a signal-to-noise ratio of two to one at an A mass of 5-20 MeV.
In our recent companion paper [arXiv:2106.00022], we pointed out a novel signature of ultralight kinetically mixed dark-photon dark matter. This signature is a quasi-monochromatic, time-oscillating terrestrial magnetic field that takes a particular pattern over the surface of the Earth. In this work, we present a search for this signal in existing, unshielded magnetometer data recorded by geographically dispersed, geomagnetic stations. The dataset comes from the SuperMAG collaboration and consists of measurements taken with one-minute cadence since 1970, with $mathcal{O}(500)$ stations contributing in all. We aggregate the magnetic field measurements from all stations by projecting them onto a small set of global vector spherical harmonics (VSH) that capture the expected vectorial pattern of the signal at each station. Within each dark-photon coherence time, we use a data-driven technique to estimate the broadband background noise in the data, and search for excess narrowband power in this set of VSH components; we stack the searches in distinct coherence times incoherently. Following a Bayesian analysis approach that allows us to account for the stochastic nature of the dark-photon dark-matter field, we set exclusion bounds on the kinetic mixing parameter in the dark-photon dark-matter mass range $2times10^{-18} text{eV} lesssim m_{A} lesssim 7times10^{-17} text{eV}$ (corresponding to frequencies $6times 10^{-4} text{Hz}lesssim f_{A} lesssim 2times 10^{-2} text{Hz}$). These limits are complementary to various existing astrophysical constraints. Although our main analysis also identifies a number of candidate signals in the SuperMAG dataset, these appear to either fail or be in strong tension with various additional robustness checks we apply to those candidates: we report no robust and significant evidence for a dark-photon dark-matter signal in the SuperMAG dataset.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا